Anyscale Academy 教程指南
2024-09-26 07:27:59作者:魏献源Searcher
1. 目录结构及介绍
仓库 anyscale/academy 提供了一系列关于 Ray 及其相关库的教程。下面是该仓库的基本目录结构及其简要说明:
.
├── advanced-ray # 高级 Ray 的相关内容
├── images # 教程中可能使用的图像资源
├── ray-cluster-launcher # 用于启动 Ray 集群的工具或脚本
├── ray-crash-course # Ray 入门快速课程材料
├── ray-project # 示例项目或练习
├── ray-rllib # 关于雷 RLlib(强化学习)的教程
├── ray-server # Ray Serve 相关内容,涉及模型服务
├── ray-train # 分布式训练(原 Ray SGD)
├── ray-tune # 超参数调优工具 Ray Tune 的教学材料
├── reference # 参考资料或旧版保留区域
├── retired # 已退役的教程或不再维护的内容
├── tmp # 临时文件或工作区
└── tools # 实用脚本,如环境配置辅助工具
├── .gitignore # Git 忽略文件
├── gitkeep # 空目录占位符
├── LICENSE # 许可证文件,遵循 Apache-2.0 许可
├── Overview.ipynb # 综合概览笔记本,描述每个教程的详细信息和包含的课程
├── README.md # 主读我文件,包含设置和导航指导
├── requirements.txt # 必需的Python依赖列表
└── ... # 更多潜在文件未列出
2. 项目启动文件介绍
在 anyscale/academy 仓库中,并没有一个单一的“启动文件”来直接运行整个项目。但是,对于交互式的教程体验,特别是那些基于 Jupyter Notebook 的教程,每一个特定的教程或示例(如位于 ray-crash-course, ray-rllib, 或其他子目录下的 .ipynb 文件)都可以视为一个启动点。用户通常通过运行相应的 Jupyter Notebook 来开始他们的学习过程。
启动流程一般包括以下步骤:
- 安装必要的环境和依赖。
- 使用命令
jupyter lab在本地启动 JupyterLab 或直接运行对应的.ipynb文件。
3. 项目的配置文件介绍
这个仓库主要依赖于几个关键文件来配置开发环境而非应用级别的配置。主要关注的配置文件有:
-
requirements.txt: 这个文件列出了所有必要的Python包及其版本,是设置项目环境的关键。当你想要安装项目所需的全部Python依赖时,可以使用命令python3 -m pip install -r requirements.txt来完成。 -
.gitignore: 指定了Git应该忽略哪些文件类型或具体文件,以避免不必要的文件被提交到版本控制中。 -
environment.yml(虽然在上述引用中未直接提到,但类似的文件在某些场景下会用作创建Conda环境的配置,尽管在这个特定链接中可能不存在。)
对于更具体的配置,比如Jupyter Lab的扩展或者特定教程的个性化设置,则可能通过脚本(如 tools/fix-jupyter.sh)来处理,这些脚本帮助准备环境或进行定制配置。
请注意,实际操作前,应确保遵循仓库提供的setup说明,这通常涉及到激活特定的Conda环境或正确配置虚拟环境来满足项目需求。
登录后查看全文
最新内容推荐
【免费下载】 免费获取Vivado 2017.4安装包及License(附带安装教程)【亲测免费】 探索脑网络连接:EEGLAB与BCT工具箱的完美结合 探索序列数据的秘密:LSTM Python代码资源库推荐【亲测免费】 小米屏下指纹手机刷机后指纹添加失败?这个开源项目帮你解决!【亲测免费】 AD9361校准指南:解锁无线通信系统的关键 探索高效工业自动化:SSC从站协议栈代码工具全面解析 微信小程序源码-仿饿了么:打造你的外卖小程序【亲测免费】 探索无线通信新境界:CMT2300A无线收发模块Demo基于STM32程序源码【亲测免费】 JDK8 中文API文档下载仓库:Java开发者的必备利器【免费下载】 Mac串口调试利器:CoolTerm与SerialPortUtility
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
512
3.68 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
873
515
Ascend Extension for PyTorch
Python
311
353
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
331
144
暂无简介
Dart
752
180
React Native鸿蒙化仓库
JavaScript
298
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
110
124
仓颉编译器源码及 cjdb 调试工具。
C++
152
883