langchain-ChatGLM项目网络搜索功能异常分析与修复
在开源项目langchain-ChatGLM的开发过程中,开发团队发现并修复了一个关于网络搜索功能的异常问题。该问题表现为当用户配置了Bing搜索引擎密钥并选择互联网搜索选项时,系统会抛出属性错误异常。
问题现象
用户在使用langchain-ChatGLM的网络搜索功能时,系统报出以下错误信息:
Traceback (most recent call last):
File ".../script_runner.py", line 600, in _run_script
exec(code, module.__dict__)
File ".../webui.py", line 69, in <module>
dialogue_page(api=api, is_lite=is_lite)
File ".../dialogue.py", line 422, in dialogue_page
docs = d.tool_output.get("docs")
AttributeError: 'str' object has no attribute 'get'
从错误堆栈可以看出,问题发生在对话页面处理网络搜索结果时。系统试图从一个字符串对象上调用get方法获取文档内容,但字符串类型并不具备get方法,导致程序崩溃。
问题根源分析
经过技术团队深入排查,发现该问题的根本原因在于:
-
网络搜索工具返回的结果格式与预期不符。代码期望的是一个包含"docs"键的字典对象,但实际返回的是一个字符串。
-
在结果处理流程中,缺少了对返回结果类型的校验和转换机制,导致当返回结果不符合预期时,程序无法优雅地处理。
-
系统命令工具也存在类似的问题,表明这是一个较为普遍的工具接口规范问题。
解决方案
开发团队在dev分支中实施了以下修复措施:
-
对网络搜索工具的输出结果进行了规范化处理,确保返回统一的结构化数据格式。
-
在处理工具输出时增加了类型检查和转换逻辑,增强了代码的健壮性。
-
对系统命令工具也进行了相应的修复,确保所有工具接口遵循相同的规范。
技术启示
这个问题的修复过程给我们带来了一些重要的技术启示:
-
接口规范化:工具接口应该定义清晰的输入输出规范,避免隐式依赖。
-
防御性编程:在处理外部数据时,应该始终进行类型检查和异常处理。
-
统一错误处理:建立统一的错误处理机制,可以避免类似问题在不同模块中重复出现。
-
自动化测试:增加对工具接口的自动化测试可以有效预防这类问题。
总结
通过这次问题的分析和修复,langchain-ChatGLM项目的网络搜索功能变得更加稳定可靠。这也提醒开发者在设计工具接口时需要考虑更多边界情况,确保系统的健壮性。对于用户而言,及时更新到修复后的版本可以避免遇到此类问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00