Apache Arrow DataFusion 移除 ParquetSource 的 pruning_predicate 字段优化
在 Apache Arrow DataFusion 项目中,近期进行了一项重要的代码优化,移除了 ParquetSource 结构体中的 pruning_predicate 字段。这项变更源于项目内部对代码架构的持续改进和简化。
背景与问题
ParquetSource 是 DataFusion 中用于处理 Parquet 文件数据源的组件。在早期版本中,该组件包含一个名为 pruning_predicate 的字段,用于实现数据剪枝(data pruning)功能。数据剪枝是一种优化技术,可以在读取数据前根据查询条件过滤掉不需要的数据块,从而减少 I/O 操作和提高查询性能。
然而,随着项目的发展,这个字段的实际用途发生了变化。在最近的代码重构中(具体体现在 PR #15301),pruning_predicate 字段已经不再被实际使用,但代码中仍然保留了这个字段和相关方法。
技术决策
项目维护者提出了明确的优化建议:
- 将相关方法的返回值改为始终返回 None
- 完全移除源中的页面剪枝谓词(page pruning predicate)
这样做的原因是为了防止代码逐渐"腐化"(bitrot)——即虽然保留着但实际已停止工作,同时又缺乏相应的测试覆盖。这种情况在长期维护的项目中很常见,无用的代码会随着时间的推移变得越来越难以维护和理解。
实现方案
具体的优化方案包括:
- 移除 ParquetSource 结构体中的 pruning_predicate 字段
- 保留已弃用(deprecated)的方法,以保持向后兼容性
- 确保相关测试覆盖这些变更
技术影响
这项变更对 DataFusion 的用户和开发者有几个重要影响:
- 代码简化:减少了不必要的代码复杂度,使代码库更加清晰
- 维护性提升:消除了潜在的代码腐化风险
- 性能影响:由于该字段已不再使用,移除它不会影响现有功能的性能
总结
这项优化体现了优秀软件工程实践中的一个重要原则:及时清理不再使用的代码。通过移除 ParquetSource 中不再使用的 pruning_predicate 字段,DataFusion 项目保持了代码库的整洁和高效,为未来的开发和维护打下了更好的基础。
对于使用 DataFusion 的开发者来说,这项变更不会带来功能上的影响,但了解这一优化有助于更好地理解项目的架构演进方向。这也提醒我们在自己的项目中,应当定期审查和清理不再使用的代码,保持代码库的健康状态。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00