Apache Arrow DataFusion 移除 ParquetSource 的 pruning_predicate 字段优化
在 Apache Arrow DataFusion 项目中,近期进行了一项重要的代码优化,移除了 ParquetSource 结构体中的 pruning_predicate 字段。这项变更源于项目内部对代码架构的持续改进和简化。
背景与问题
ParquetSource 是 DataFusion 中用于处理 Parquet 文件数据源的组件。在早期版本中,该组件包含一个名为 pruning_predicate 的字段,用于实现数据剪枝(data pruning)功能。数据剪枝是一种优化技术,可以在读取数据前根据查询条件过滤掉不需要的数据块,从而减少 I/O 操作和提高查询性能。
然而,随着项目的发展,这个字段的实际用途发生了变化。在最近的代码重构中(具体体现在 PR #15301),pruning_predicate 字段已经不再被实际使用,但代码中仍然保留了这个字段和相关方法。
技术决策
项目维护者提出了明确的优化建议:
- 将相关方法的返回值改为始终返回 None
- 完全移除源中的页面剪枝谓词(page pruning predicate)
这样做的原因是为了防止代码逐渐"腐化"(bitrot)——即虽然保留着但实际已停止工作,同时又缺乏相应的测试覆盖。这种情况在长期维护的项目中很常见,无用的代码会随着时间的推移变得越来越难以维护和理解。
实现方案
具体的优化方案包括:
- 移除 ParquetSource 结构体中的 pruning_predicate 字段
- 保留已弃用(deprecated)的方法,以保持向后兼容性
- 确保相关测试覆盖这些变更
技术影响
这项变更对 DataFusion 的用户和开发者有几个重要影响:
- 代码简化:减少了不必要的代码复杂度,使代码库更加清晰
- 维护性提升:消除了潜在的代码腐化风险
- 性能影响:由于该字段已不再使用,移除它不会影响现有功能的性能
总结
这项优化体现了优秀软件工程实践中的一个重要原则:及时清理不再使用的代码。通过移除 ParquetSource 中不再使用的 pruning_predicate 字段,DataFusion 项目保持了代码库的整洁和高效,为未来的开发和维护打下了更好的基础。
对于使用 DataFusion 的开发者来说,这项变更不会带来功能上的影响,但了解这一优化有助于更好地理解项目的架构演进方向。这也提醒我们在自己的项目中,应当定期审查和清理不再使用的代码,保持代码库的健康状态。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









