Bevy引擎中骨骼网格的视锥体剔除问题解析
在Bevy游戏引擎中,开发者在使用骨骼网格(Skinned Mesh)时可能会遇到一个棘手的问题:即使网格完全位于摄像机视野范围内,仍然会被错误地剔除。这种现象严重影响了场景构建的自由度,开发者不得不依赖禁用视锥体剔除(NoFrustumCulling)来规避问题。
问题本质
问题的根源在于骨骼网格的包围盒(AABB)计算不准确。在3D渲染中,视锥体剔除是一种优化技术,通过判断物体的包围盒是否与摄像机的视锥体相交来决定是否渲染该物体。对于普通静态网格,这个机制工作良好,但对于骨骼动画这类动态变形的网格,情况就变得复杂了。
骨骼网格在动画过程中会不断变形,其实际形状可能远远超出初始的包围盒范围。当前的Bevy实现在处理骨骼网格时,使用的是基于静态姿态的初始包围盒,而没有考虑动画过程中骨骼变形对包围盒的影响。这导致当网格因动画而变形时,实际顶点可能已经超出了初始包围盒的范围,从而被错误地剔除。
影响范围
这个问题特别影响以下场景:
- 从GLTF文件加载的带有骨骼动画的场景
- 使用复杂骨骼层级结构的角色模型
- 动画幅度较大的动作序列
- 摄像机距离模型较远的场景
当开发者不使用NoFrustumCulling标记时,可能会发现某些骨骼网格在特定视角或特定动画帧时突然消失,即使它们明显应该位于摄像机视野内。
临时解决方案
目前开发者可以采用以下几种临时解决方案:
-
全局禁用视锥体剔除:为骨骼网格实体添加NoFrustumCulling组件,但这会牺牲性能优化。
-
手动扩展包围盒:根据动画的最大变形范围,手动设置足够大的包围盒。
-
使用社区插件:有开发者提供了专门解决此问题的插件,可以自动计算骨骼动画过程中的最大包围盒。
未来改进方向
Bevy核心开发团队已经意识到这个问题,并计划在未来版本中提供更完善的解决方案。可能的改进方向包括:
-
动态包围盒计算:在动画过程中实时更新网格的包围盒。
-
预计算最大包围盒:分析动画序列,预先计算出整个动画过程中可能达到的最大包围范围。
-
混合剔除策略:对骨骼网格采用更宽松的剔除策略,确保动画不会意外被剔除。
最佳实践建议
在问题完全解决前,建议开发者:
- 对关键角色模型使用NoFrustumCulling
- 对背景角色或次要动画可以保留标准剔除
- 定期关注引擎更新,及时移除临时解决方案
- 在场景设计时预留足够的空间余量,避免模型过于靠近剔除边界
这个问题虽然影响开发体验,但理解其背后的技术原理后,开发者可以更有针对性地采取应对措施,同时期待官方在未来版本中提供更优雅的解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00