SST项目中NextjsSite构建服务器缓存策略的演进与实践
2025-05-09 09:31:44作者:宣聪麟
在SST框架的演进过程中,NextjsSite组件的服务器缓存策略配置方式发生了变化。本文将从技术实现角度分析这一变化,并分享实际项目中的解决方案。
缓存策略的背景与重要性
在现代Web应用中,合理的缓存策略对性能优化至关重要。SST框架通过CloudFront CDN为Next.js应用提供边缘缓存能力,其中服务器端渲染(SSR)页面的缓存策略需要特别设计。
原有实现方式的变化
早期版本中,SST提供了buildDefaultServerCachePolicyProps()方法来构建默认的服务器缓存策略。但在新版本中,这一方法已被移除,开发者需要自行配置完整的缓存策略。
自定义缓存策略的实现
在实际项目中,我们可以参考SSRSite和NextjsSite的原有实现,结合项目需求进行定制:
{
cdk: {
distribution: {
defaultBehavior: {
responseHeadersPolicy: cf.ResponseHeadersPolicy.SECURITY_HEADERS,
},
},
serverCachePolicy: new cf.CachePolicy(stack, 'ServerCache', {
queryStringBehavior: cf.CacheQueryStringBehavior.all(),
headerBehavior: cf.CacheHeaderBehavior.allowList(
'x-open-next-cache-key',
'accept-language'
),
cookieBehavior: cf.CacheCookieBehavior.allowList('appSession', 'hubspotutk'),
defaultTtl: cdk.Duration.days(0),
maxTtl: cdk.Duration.days(365),
minTtl: cdk.Duration.days(0),
enableAcceptEncodingBrotli: true,
enableAcceptEncodingGzip: true,
comment: 'SST server response cache policy',
}),
},
}
关键配置解析
- 安全头设置:通过
SECURITY_HEADERS添加了基本的安全头部 - 查询参数处理:允许所有查询参数影响缓存键
- 头部处理:
- 保留
x-open-next-cache-key用于OpenNext框架的缓存控制 - 添加
accept-language支持多语言场景
- 保留
- Cookie处理:
- 包含
appSession用于身份验证 - 包含
hubspotutk支持HubSpot跟踪
- 包含
- 压缩支持:启用Brotli和Gzip压缩
- TTL设置:
- 默认TTL为0天
- 最大TTL为365天
- 最小TTL为0天
最佳实践建议
- 根据应用特点调整:不同应用对缓存的需求不同,应根据实际场景调整
- 关注安全头部:始终确保包含基本的安全头部
- 考虑国际化:多语言应用需要正确处理语言相关的头部
- 身份验证处理:确保认证相关的Cookie被正确处理
- 监控与调优:部署后监控缓存命中率,持续优化策略
总结
SST框架的演进使得开发者需要更深入地理解缓存策略的配置。通过自定义策略,我们可以更好地控制应用的行为,在保证功能完整性的同时获得最佳性能。这种变化虽然增加了配置的复杂性,但也提供了更大的灵活性,使开发者能够根据具体需求进行精细调整。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110