.NET Core Performance Monitor 性能监控系统深度解析
2025-06-19 09:36:36作者:俞予舒Fleming
前言
在现代软件开发中,性能监控是确保应用程序健康运行的关键环节。本文将深入解析一个基于.NET Core的性能监控系统,该系统能够全面监控应用程序的各项性能指标,为开发者提供直观的性能分析视图。
系统架构概述
该性能监控系统采用三层架构设计:
- 数据采集层:通过.NET Core API和TraceEvent库收集性能数据
- 数据存储层:使用SQL数据库进行数据持久化
- 数据展示层:基于ASP.NET Core和Razor Pages构建可视化界面
数据采集机制详解
基础性能指标采集
系统通过System.Diagnostics.Process类采集基础性能指标:
CPU使用率监控
- 通过
Process.TotalProcessorTime获取进程CPU总时间 - 结合采样间隔和逻辑核心数计算CPU使用率百分比
- 计算公式:
CPU使用率 = (当前CPU时间 - 上次CPU时间) / (采样间隔 * 逻辑核心数)
内存使用监控
- 直接读取
Process.WorkingSet64属性 - 获取当前进程工作集内存大小(字节)
- 无需复杂计算,直接记录原始值
高级事件监控(TraceEvent库)
系统利用TraceEvent库监控多种运行时事件:
HTTP请求监控
- 需要特殊配置启用ASP.NET Core请求跟踪
- 捕获请求开始/结束事件
- 记录请求方法、路径、持续时间等关键信息
异常监控
- 捕获CLR异常事件
- 记录异常类型、发生频率
- 可识别最常见异常类型
垃圾回收监控
- 监控多种GC相关事件
- 记录GC类型(Gen0/Gen1/Gen2/后台GC)
- 计算GC暂停时间
线程争用监控
- 捕获锁争用开始/结束事件
- 计算争用持续时间
- 识别高争用区域
JIT编译监控
- 记录方法JIT编译事件
- 跟踪热点方法
- 分析启动期JIT活动
数据存储与传输设计
数据结构设计
系统定义了多种数据类来标准化性能指标:
// CPU使用率数据类示例
public class CPU_Usage
{
public Session App { get; set; }
public DateTime timestamp { get; set; }
public double usage { get; set; } // 百分比
}
会话上下文管理
Session类维护监控会话的上下文信息:
public class Session
{
public string application { get; set; } // 应用名称
public string process { get; set; } // 进程名称
public string os { get; set; } // 操作系统
public int? sampleRate { get; set; } // 采样率(ms)
// 其他字段...
}
数据批处理机制
- 使用线程安全集合临时存储采集数据
- 定时批量发送到服务端
- 采用双重缓冲技术避免数据竞争
lock (lockObject)
{
// 批量处理数据
list.cpu = CPUVals;
// 重置缓冲区
CPUVals = new List<CPU_Usage>();
}
数据可视化实现
前端架构
- 基于ASP.NET Core Razor Pages构建
- 采用模块化设计,每种指标独立页面
- 共享布局和通用组件
数据获取流程
- 前端通过REST API请求数据
- 服务端从数据库查询指定时间范围数据
- 数据以JSON格式返回
- 前端使用Plotly.js渲染图表
关键API端点
/api/v1/CPU/Daterange:获取CPU使用数据/api/v1/MEM/Daterange:获取内存使用数据- 其他指标类似设计
使用指南
基础集成步骤
- 引用性能监控库
- 创建Monitor实例
- 配置监控选项
- 开始记录
var monitor = new Monitor();
monitor.EnableHttp(); // 启用HTTP监控
monitor.EnableException(); // 启用异常监控
monitor.Record(); // 开始记录
高级配置选项
- 设置采样率:控制CPU/内存采样频率
- 配置发送率:调整数据批量发送间隔
- 选择性启用监控项:按需启用特定指标
性能考量与最佳实践
- 采样率选择:过高影响性能,过低丢失细节
- 事件过滤:只监控关键事件减少开销
- 批处理优化:平衡实时性和系统负载
- 异常处理:确保监控过程不影响主业务
总结
该.NET Core性能监控系统提供了全面的应用程序性能洞察能力,从基础资源使用到运行时事件,为性能优化提供了有力工具。其模块化设计允许灵活配置,适应不同场景需求。通过理解其架构原理和使用方法,开发者可以更有效地诊断和解决性能问题。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355