xiaozhi-esp32-server项目中豆包API与TTS集成时的Markdown语法处理问题分析
2025-06-17 16:21:53作者:沈韬淼Beryl
在智能语音交互系统的开发过程中,文本到语音(TTS)转换的质量直接影响用户体验。近期在xiaozhi-esp32-server项目中发现了一个值得关注的技术问题:当使用豆包API作为语言模型(Language Model)并配合火山流式TTS服务时,返回内容中的Markdown语法标记会被直接朗读出来,这显然不符合预期的交互体验。
问题现象
具体表现为,当系统返回带有Markdown格式的内容时,例如:
- 加粗标记(文本)
- 列表标记(1. 2. 3.)
- 其他Markdown特殊符号
这些本应用于文本格式化的标记符号会被TTS引擎当作普通文本朗读出来,导致语音输出中出现"星号星号"、"数字点"等不必要的内容,严重影响语音交互的自然流畅性。
技术背景分析
这个问题涉及几个关键技术点:
-
豆包API的输出特性:豆包作为语言模型服务,其返回内容默认保留了Markdown格式,这是为了方便在支持Markdown渲染的客户端(如网页、APP等)中显示丰富的文本样式。
-
TTS引擎的处理机制:火山流式TTS作为专业的语音合成服务,其设计初衷是忠实转换输入文本,不会自动过滤特殊符号或格式标记,这属于正常行为。
-
系统集成架构:在xiaozhi-esp32-server项目中,LLM的输出直接传递给TTS服务,中间缺少必要的文本预处理环节。
解决方案探讨
针对这一问题,项目团队可以考虑以下几种技术方案:
-
预处理过滤方案:
- 在LLM输出和TTS输入之间增加Markdown解析器
- 提取纯文本内容,去除所有格式标记
- 实现简单,效果直接
-
模型配置方案:
- 研究豆包API是否支持返回纯文本模式
- 可能需要在API调用时设置特定参数
- 从源头解决问题,但依赖API功能支持
-
混合处理方案:
- 结合上述两种方法
- 优先尝试获取纯文本输出
- 保留预处理作为后备方案
实现建议
基于项目现状,推荐采用预处理过滤方案,具体实现可考虑:
- 使用轻量级Markdown解析库,避免引入过大依赖
- 针对常见Markdown元素(加粗、斜体、列表等)设计专用过滤器
- 保留必要的语义停顿标记(如段落分隔),确保语音自然度
- 对特殊内容(如代码块)进行适当转换而非简单删除
项目实践意义
解决这一问题将显著提升xiaozhi-esp32-server项目的语音交互体验:
- 使语音输出更加自然流畅
- 保持与文本显示的一致性
- 为后续支持更丰富的交互场景奠定基础
- 提高系统的专业度和完成度
此问题的解决也体现了在AI系统集成中,各组件间的数据格式适配和预处理的重要性,是构建高质量智能交互系统不可忽视的环节。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1