ktransformers项目部署DeepSeek-V3模型常见问题解析
2025-05-16 15:22:21作者:晏闻田Solitary
在部署ktranformers项目时,许多开发者遇到了服务启动后端口未正常开放的问题。本文将深入分析这一现象的技术原因,并提供完整的解决方案。
问题现象分析
当开发者尝试使用ktranformers部署DeepSeek-V3模型时,服务启动后控制台输出显示"Getting inference context from sched_client"后便停滞不前,端口未能正常开放。这种情况通常发生在使用balance_serve后端类型时。
根本原因
经过技术分析,发现该问题主要由两个关键因素导致:
-
模型路径命名规范:ktranformers对模型路径的命名有严格要求,路径末端必须包含"DeepSeek-V3"字样。这是框架内部识别模型类型的重要依据。
-
模型配置文件缺失:项目需要完整的模型配置文件,包括config.json、tokenizer配置等小型文件,而不仅仅是模型权重文件。
完整解决方案
1. 准备模型文件
首先需要从模型仓库下载以下必要文件:
- config.json
- configuration_deepseek.py
- tokenizer_config.json
- tokenizer.json
- modeling_deepseek.py
- LICENSE
- README.md
这些文件应当存放在以"DeepSeek-V3"结尾的目录中,例如:
/data/DeepSeek-V3/
2. 准备GGUF量化文件
同时需要准备GGUF格式的量化模型文件,例如:
/data/DeepSeek-V3-0324/q4_files/Q4_K_M/
该目录应包含分片的GGUF文件。
3. 正确的启动命令
使用以下命令格式启动服务:
python ktransformers/server/main.py \
--port 11434 \
--model_path /data/DeepSeek-V3 \
--model_name "DeepSeek-V3-0324:671b-q4_k_m" \
--gguf_path /data/DeepSeek-V3-0324/q4_files/Q4_K_M \
--optimize_config_path ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat-serve.yaml \
--max_new_tokens 1024 \
--cpu_infer 62 \
--cache_lens 131072 \
--chunk_size 256 \
--max_batch_size 4 \
--temperature 0.3 \
--backend_type balance_serve
环境配置要点
-
CUDA版本匹配:确保CUDA版本与PyTorch版本匹配。常见组合包括:
- CUDA 12.6 + PyTorch 2.6
- CUDA 12.8 + PyTorch 2.8
-
FlashAttention安装:正确安装flash_attn和custom_flashinfer:
pip3 install flash_attn-2.7.4.post1+cu12torch2.6cxx11abiTRUE-cp311-cp311-linux_x86_64.whl
pip install third_party/custom_flashinfer/
- 环境变量设置:
export CUDA_HOME=/usr/local/cuda
export TORCH_CUDA_ARCH_LIST="8.6"
通用解决方案
该问题不仅限于DeepSeek-V3模型,对于其他大模型如Qwen3-235B-A22B等也适用类似的解决方案。关键在于:
- 确保模型路径符合框架预期
- 提供完整的模型配置文件
- 环境配置正确无误
通过遵循上述步骤,开发者可以成功部署ktranformers项目并解决服务启动后端口未开放的问题。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5