Cognita项目中CrossEncoder在MPS设备上的兼容性问题解析
2025-06-16 16:37:35作者:裘晴惠Vivianne
问题背景
在Cognita项目的本地运行环境中,当用户尝试在配备Apple M1芯片的MacBook Air上执行检索增强生成(RAG)功能时,遇到了一个与Sentence Transformers库中CrossEncoder组件相关的设备兼容性问题。这个问题特别出现在使用macOS系统且具有MPS(Metal Performance Shaders)支持的苹果芯片设备上。
技术细节分析
CrossEncoder组件在初始化时会自动检测可用的最佳计算设备。在检测逻辑中,它会按照以下优先级选择设备:
- CUDA (NVIDIA GPU)
- MPS (苹果Metal)
- NPU (神经网络处理器)
- HPU (Habana处理器)
- CPU (最后回退选项)
在M1/M2芯片的Mac设备上,由于torch.backends.mps.is_available()返回True,CrossEncoder会优先选择MPS作为计算设备。然而,当使用Deberta-v2模型进行推理时,模型内部的相对位置编码计算会调用torch.sign()函数,而当前PyTorch的MPS后端尚未完善支持对int64类型数据的sign操作。
错误表现
具体错误表现为:
TypeError: Operation 'sign_out_mps()' does not support input type 'int64' in MPS backend.
这个错误发生在Deberta-v2模型的相对位置编码计算过程中,当尝试对int64类型的张量执行sign操作时,MPS后端无法处理。
解决方案
Cognita项目团队已经实施了以下解决方案:
-
强制回退机制:当CUDA不可用时,即使检测到MPS可用,也强制回退到CPU执行,确保兼容性。
-
未来改进方向:计划通过环境变量或运行时参数提供设备选择的灵活性,让用户能够根据实际情况指定计算设备。
开发者建议
对于在苹果芯片设备上开发类似应用的开发者,建议:
- 在模型初始化时显式指定设备类型,避免依赖自动检测
- 对于特定模型(如Deberta系列),优先考虑使用CPU执行
- 关注PyTorch对MPS后端的更新,随着版本迭代,这类兼容性问题可能会得到解决
总结
这个案例展示了在跨平台深度学习应用中设备兼容性的重要性。Cognita项目通过实施合理的回退机制,确保了应用在不同硬件环境下的稳定运行。这也提醒开发者,在支持多种计算设备时,需要充分考虑各后端的特性限制,并提供适当的回退方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19