Cognita项目中CrossEncoder在MPS设备上的兼容性问题解析
2025-06-16 13:57:25作者:裘晴惠Vivianne
问题背景
在Cognita项目的本地运行环境中,当用户尝试在配备Apple M1芯片的MacBook Air上执行检索增强生成(RAG)功能时,遇到了一个与Sentence Transformers库中CrossEncoder组件相关的设备兼容性问题。这个问题特别出现在使用macOS系统且具有MPS(Metal Performance Shaders)支持的苹果芯片设备上。
技术细节分析
CrossEncoder组件在初始化时会自动检测可用的最佳计算设备。在检测逻辑中,它会按照以下优先级选择设备:
- CUDA (NVIDIA GPU)
- MPS (苹果Metal)
- NPU (神经网络处理器)
- HPU (Habana处理器)
- CPU (最后回退选项)
在M1/M2芯片的Mac设备上,由于torch.backends.mps.is_available()返回True,CrossEncoder会优先选择MPS作为计算设备。然而,当使用Deberta-v2模型进行推理时,模型内部的相对位置编码计算会调用torch.sign()函数,而当前PyTorch的MPS后端尚未完善支持对int64类型数据的sign操作。
错误表现
具体错误表现为:
TypeError: Operation 'sign_out_mps()' does not support input type 'int64' in MPS backend.
这个错误发生在Deberta-v2模型的相对位置编码计算过程中,当尝试对int64类型的张量执行sign操作时,MPS后端无法处理。
解决方案
Cognita项目团队已经实施了以下解决方案:
-
强制回退机制:当CUDA不可用时,即使检测到MPS可用,也强制回退到CPU执行,确保兼容性。
-
未来改进方向:计划通过环境变量或运行时参数提供设备选择的灵活性,让用户能够根据实际情况指定计算设备。
开发者建议
对于在苹果芯片设备上开发类似应用的开发者,建议:
- 在模型初始化时显式指定设备类型,避免依赖自动检测
- 对于特定模型(如Deberta系列),优先考虑使用CPU执行
- 关注PyTorch对MPS后端的更新,随着版本迭代,这类兼容性问题可能会得到解决
总结
这个案例展示了在跨平台深度学习应用中设备兼容性的重要性。Cognita项目通过实施合理的回退机制,确保了应用在不同硬件环境下的稳定运行。这也提醒开发者,在支持多种计算设备时,需要充分考虑各后端的特性限制,并提供适当的回退方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
668
154
Ascend Extension for PyTorch
Python
218
235
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
306
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
259
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
652
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866