探索智能驾驶:Drive-WM,世界模型驱动的多视图视觉预测与规划
2024-06-07 04:34:36作者:咎竹峻Karen
在自动驾驶领域,精准的预测和智能的规划是关键所在。这就是Drive-WM项目的意义所在。由Yuqi Wang、Jiawei He、Lue Fan等多位研究人员共同贡献,这个开源项目引入了先进的世界模型(World Model)技术,以实现多视图视觉预测和规划,为自动驾驶开辟新的可能。
项目介绍
Drive-WM是一个基于diffusers框架的先进研究项目,旨在通过构建一个能够理解环境变化并预测环境演变的模型,来提升自动驾驶系统的决策能力。它包含了从单一图像到连续视频序列的条件生成模型,以及考虑行动因素的视频预测模型,以模拟复杂交通场景中的动态行为。
项目技术分析
该项目的核心是利用世界模型进行多视角视觉预测和规划。世界模型是一种强大的机器学习框架,它可以学习并存储环境的状态,然后基于该状态预测环境的演变趋势。Drive-WM结合了这一概念,不仅能够生成逼真的图像和视频,还能预测车辆和其他道路使用者的行为,从而为自动驾驶系统提供更精确的决策依据。
此外,Drive-WM提供了训练代码,这使得研究人员和开发人员可以复现结果并进一步改进模型。即将发布的预训练模型权重将使实验更加便捷。
项目及技术应用场景
Drive-WM技术适用于各种自动驾驶相关场景,例如:
- 安全驾驶 - 预测周围车辆和行人的动态,提前做好避让或制动准备。
- 路径规划 - 基于环境预测,选择最佳行驶路线,避免潜在冲突。
- 智能交互 - 模拟其他道路用户的反应,优化自动驾驶车辆的人车交互。
项目特点
- 多视图预测 - 能够从多个角度理解环境,提供全方位的信息。
- 实时性 - 利用高效模型设计,适应实时的决策需求。
- 可扩展性 - 开源代码结构允许开发者添加新特性或适配不同场景。
- 灵活性 - 支持条件生成和预测,可以根据当前状态和预期行动生成预测。
Drive-WM不仅是自动驾驶领域的创新尝试,也是推动智能交通系统发展的坚实一步。我们鼓励所有对自动驾驶感兴趣的研究者和工程师探索、使用并贡献于这个项目,共同推进智能驾驶的技术进步。
别忘了,当您使用此项目时,请引用以下文献:
@article{wang2023driving,
title={Driving into the Future: Multiview Visual Forecasting and Planning with World Model for Autonomous Driving},
author={Wang, Yuqi and He, Jiawei and Fan, Lue and Li, Hongxin and Chen, Yuntao and Zhang, Zhaoxiang},
journal={arXiv preprint arXiv:2311.17918},
year={2023}
}
让我们一起踏上这场探索智能驾驶的旅程!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869