XTuner项目多节点训练配置指南
2025-06-13 04:33:02作者:咎竹峻Karen
多节点训练概述
在深度学习领域,当模型规模不断扩大时,单节点计算资源往往无法满足训练需求。XTuner项目作为一个高效的训练框架,支持多节点分布式训练模式,能够有效利用多台服务器的计算资源加速训练过程。本文将详细介绍XTuner在多节点环境下的配置方法。
两种多节点训练方式
XTuner提供了两种主要的多节点训练方案,分别基于不同的任务调度系统:
1. 基于Torch分布式训练
这种方法适用于直接通过SSH连接的多节点环境,需要手动在每个节点上启动训练进程。
配置参数说明:
NPROC_PER_NODE:每个节点使用的GPU数量NNODES:参与训练的总节点数PORT:用于节点间通信的端口号ADDR:主节点(节点0)的IP地址NODE_RANK:当前节点的序号(从0开始)
启动命令示例:
# 在节点0上执行
NPROC_PER_NODE=8 NNODES=2 PORT=29600 ADDR=192.168.1.100 NODE_RANK=0 xtuner train config.py --deepspeed ds_config.json
# 在节点1上执行
NPROC_PER_NODE=8 NNODES=2 PORT=29600 ADDR=192.168.1.100 NODE_RANK=1 xtuner train config.py --deepspeed ds_config.json
2. 基于Slurm集群调度系统
对于已部署Slurm集群的环境,XTuner提供了更简便的启动方式。
关键参数:
-p:指定使用的分区--nodes:节点总数--gres=gpu:8:每个节点分配的GPU数量--ntasks-per-node:每个节点的任务数(通常等于GPU数)
启动命令示例:
srun -p gpu_partition --nodes=2 --gres=gpu:8 --ntasks-per-node=8 xtuner train config.py --deepspeed ds_config.json --launcher slurm
技术要点解析
-
DeepSpeed集成:XTuner通过集成DeepSpeed优化器,有效降低了多节点训练时的显存占用和通信开销。
-
通信优化:PORT参数指定的端口号需要确保在所有节点上可访问,且不被防火墙阻挡。
-
资源匹配:NPROC_PER_NODE应与实际GPU数量严格匹配,否则会导致资源浪费或训练失败。
-
一致性要求:所有节点上的训练配置(config.py)和DeepSpeed配置(ds_config.json)必须完全一致。
最佳实践建议
-
在正式训练前,建议先用小批量数据测试多节点通信是否正常。
-
对于大规模训练任务,建议使用高速网络(如InfiniBand)以减少通信延迟。
-
监控各节点的GPU利用率,确保计算资源得到充分利用。
-
考虑使用checkpoint功能,防止因节点故障导致训练中断。
通过合理配置XTuner的多节点训练功能,研究人员可以显著提升大规模模型的训练效率,缩短实验周期。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250