XTuner项目多节点训练配置指南
2025-06-13 19:47:44作者:咎竹峻Karen
多节点训练概述
在深度学习领域,当模型规模不断扩大时,单节点计算资源往往无法满足训练需求。XTuner项目作为一个高效的训练框架,支持多节点分布式训练模式,能够有效利用多台服务器的计算资源加速训练过程。本文将详细介绍XTuner在多节点环境下的配置方法。
两种多节点训练方式
XTuner提供了两种主要的多节点训练方案,分别基于不同的任务调度系统:
1. 基于Torch分布式训练
这种方法适用于直接通过SSH连接的多节点环境,需要手动在每个节点上启动训练进程。
配置参数说明:
NPROC_PER_NODE
:每个节点使用的GPU数量NNODES
:参与训练的总节点数PORT
:用于节点间通信的端口号ADDR
:主节点(节点0)的IP地址NODE_RANK
:当前节点的序号(从0开始)
启动命令示例:
# 在节点0上执行
NPROC_PER_NODE=8 NNODES=2 PORT=29600 ADDR=192.168.1.100 NODE_RANK=0 xtuner train config.py --deepspeed ds_config.json
# 在节点1上执行
NPROC_PER_NODE=8 NNODES=2 PORT=29600 ADDR=192.168.1.100 NODE_RANK=1 xtuner train config.py --deepspeed ds_config.json
2. 基于Slurm集群调度系统
对于已部署Slurm集群的环境,XTuner提供了更简便的启动方式。
关键参数:
-p
:指定使用的分区--nodes
:节点总数--gres=gpu:8
:每个节点分配的GPU数量--ntasks-per-node
:每个节点的任务数(通常等于GPU数)
启动命令示例:
srun -p gpu_partition --nodes=2 --gres=gpu:8 --ntasks-per-node=8 xtuner train config.py --deepspeed ds_config.json --launcher slurm
技术要点解析
-
DeepSpeed集成:XTuner通过集成DeepSpeed优化器,有效降低了多节点训练时的显存占用和通信开销。
-
通信优化:PORT参数指定的端口号需要确保在所有节点上可访问,且不被防火墙阻挡。
-
资源匹配:NPROC_PER_NODE应与实际GPU数量严格匹配,否则会导致资源浪费或训练失败。
-
一致性要求:所有节点上的训练配置(config.py)和DeepSpeed配置(ds_config.json)必须完全一致。
最佳实践建议
-
在正式训练前,建议先用小批量数据测试多节点通信是否正常。
-
对于大规模训练任务,建议使用高速网络(如InfiniBand)以减少通信延迟。
-
监控各节点的GPU利用率,确保计算资源得到充分利用。
-
考虑使用checkpoint功能,防止因节点故障导致训练中断。
通过合理配置XTuner的多节点训练功能,研究人员可以显著提升大规模模型的训练效率,缩短实验周期。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58