Harvester 开源项目教程
1. 项目介绍
Harvester 是一个基于 Kubernetes 的开源超融合基础设施 (HCI) 软件。它旨在为企业提供一个易于使用、高性能的基础设施平台,利用本地直接附加存储而不是复杂的外部 SAN。Harvester 通过 Kubernetes API 统一了容器和虚拟机工作负载的自动化语言,提供了虚拟机生命周期管理、实时迁移、备份与恢复、存储管理、网络管理等功能。
2. 项目快速启动
2.1 安装 Harvester
首先,从 GitHub 下载 Harvester ISO 文件:
wget https://github.com/harvester/harvester/releases/download/v1.3.2/harvester-v1.3.2-amd64.iso
将 ISO 文件挂载到裸金属服务器上,并启动服务器。选择 Harvester Installer 选项进行安装。
2.2 创建新集群
在安装过程中,选择“创建新 Harvester 集群”选项。配置以下参数:
- 安装磁盘:选择安装 Harvester 集群的磁盘。
- 数据磁盘:选择存储虚拟机数据的磁盘。
- 持久分区大小:如果使用同一磁盘存储系统和虚拟机数据,配置持久分区大小(默认 150 GiB)。
2.3 配置网络
配置管理网络接口,选择 DHCP 或静态 IP 地址。配置虚拟 IP (VIP) 以便其他节点加入集群。
2.4 完成安装
确认安装选项后,Harvester 将自动安装并配置集群。安装完成后,服务器将重启,Harvester 控制台将显示管理 URL 和状态。
3. 应用案例和最佳实践
3.1 企业级虚拟化
Harvester 适用于需要高性能虚拟化环境的企业。通过集成 Kubernetes,Harvester 不仅支持传统虚拟机,还能无缝支持容器化应用,实现从核心到边缘的统一管理。
3.2 边缘计算
Harvester 的轻量级和易于部署的特性使其成为边缘计算环境的理想选择。通过与 Rancher 集成,Harvester 可以在边缘节点上自动管理虚拟机和容器,确保数据和应用的高可用性。
3.3 混合云环境
Harvester 支持与现有云环境的集成,提供一致的管理体验。企业可以在本地数据中心和公有云之间灵活部署和管理应用,实现混合云架构。
4. 典型生态项目
4.1 Rancher
Rancher 是一个开源的多集群管理平台,与 Harvester 深度集成。通过 Rancher,用户可以在统一界面中管理 Harvester 集群和其他 Kubernetes 集群,实现跨环境的资源调度和应用管理。
4.2 Longhorn
Longhorn 是一个轻量级、可靠且易于使用的分布式块存储系统,专为 Kubernetes 设计。Harvester 集成了 Longhorn,提供高性能的分布式存储解决方案,支持虚拟机和容器的数据持久化。
4.3 KubeVirt
KubeVirt 是一个 Kubernetes 的虚拟机管理插件,允许在 Kubernetes 集群中运行和管理虚拟机。Harvester 利用 KubeVirt 提供虚拟机生命周期管理功能,确保虚拟机和容器在同一平台上的无缝集成。
通过以上模块的介绍,您可以快速了解 Harvester 开源项目的核心功能和应用场景,并开始在您的环境中部署和使用 Harvester。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00