Harvester 开源项目教程
1. 项目介绍
Harvester 是一个基于 Kubernetes 的开源超融合基础设施 (HCI) 软件。它旨在为企业提供一个易于使用、高性能的基础设施平台,利用本地直接附加存储而不是复杂的外部 SAN。Harvester 通过 Kubernetes API 统一了容器和虚拟机工作负载的自动化语言,提供了虚拟机生命周期管理、实时迁移、备份与恢复、存储管理、网络管理等功能。
2. 项目快速启动
2.1 安装 Harvester
首先,从 GitHub 下载 Harvester ISO 文件:
wget https://github.com/harvester/harvester/releases/download/v1.3.2/harvester-v1.3.2-amd64.iso
将 ISO 文件挂载到裸金属服务器上,并启动服务器。选择 Harvester Installer 选项进行安装。
2.2 创建新集群
在安装过程中,选择“创建新 Harvester 集群”选项。配置以下参数:
- 安装磁盘:选择安装 Harvester 集群的磁盘。
- 数据磁盘:选择存储虚拟机数据的磁盘。
- 持久分区大小:如果使用同一磁盘存储系统和虚拟机数据,配置持久分区大小(默认 150 GiB)。
2.3 配置网络
配置管理网络接口,选择 DHCP 或静态 IP 地址。配置虚拟 IP (VIP) 以便其他节点加入集群。
2.4 完成安装
确认安装选项后,Harvester 将自动安装并配置集群。安装完成后,服务器将重启,Harvester 控制台将显示管理 URL 和状态。
3. 应用案例和最佳实践
3.1 企业级虚拟化
Harvester 适用于需要高性能虚拟化环境的企业。通过集成 Kubernetes,Harvester 不仅支持传统虚拟机,还能无缝支持容器化应用,实现从核心到边缘的统一管理。
3.2 边缘计算
Harvester 的轻量级和易于部署的特性使其成为边缘计算环境的理想选择。通过与 Rancher 集成,Harvester 可以在边缘节点上自动管理虚拟机和容器,确保数据和应用的高可用性。
3.3 混合云环境
Harvester 支持与现有云环境的集成,提供一致的管理体验。企业可以在本地数据中心和公有云之间灵活部署和管理应用,实现混合云架构。
4. 典型生态项目
4.1 Rancher
Rancher 是一个开源的多集群管理平台,与 Harvester 深度集成。通过 Rancher,用户可以在统一界面中管理 Harvester 集群和其他 Kubernetes 集群,实现跨环境的资源调度和应用管理。
4.2 Longhorn
Longhorn 是一个轻量级、可靠且易于使用的分布式块存储系统,专为 Kubernetes 设计。Harvester 集成了 Longhorn,提供高性能的分布式存储解决方案,支持虚拟机和容器的数据持久化。
4.3 KubeVirt
KubeVirt 是一个 Kubernetes 的虚拟机管理插件,允许在 Kubernetes 集群中运行和管理虚拟机。Harvester 利用 KubeVirt 提供虚拟机生命周期管理功能,确保虚拟机和容器在同一平台上的无缝集成。
通过以上模块的介绍,您可以快速了解 Harvester 开源项目的核心功能和应用场景,并开始在您的环境中部署和使用 Harvester。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00