使用PGAI构建基于RAG的客户反馈分析系统
2025-06-11 03:31:19作者:滑思眉Philip
引言
在现代商业环境中,理解客户反馈对于业务增长至关重要。本文将介绍如何利用PGAI项目构建一个基于检索增强生成(RAG)的客户反馈分析系统,通过结合PostgreSQL的强大数据管理能力和AI模型的智能分析能力,帮助企业从海量客户反馈中快速获取有价值的商业洞察。
技术架构概述
该系统由三个核心组件构成:
- 私有数据集:包含行业知识、最新业务数据和大量客户反馈
- 嵌入模型:将文本数据转换为数值向量,便于相似性计算
- 大语言模型:如Gemini、ChatGPT等,用于生成最终分析报告
实际应用场景
以一个披萨店订单下降分析为例,系统可以:
- 收集并存储客户反馈数据
- 通过语义搜索找出与"订单下降"相关的反馈
- 生成包含问题原因和建议的商业报告
关键技术实现
1. 数据准备
首先创建存储客户反馈的表结构,包含文本内容和嵌入向量:
CREATE TABLE public.t_embeddings_dmeta (
id bigserial PRIMARY KEY,
title text NOT NULL,
content text NOT NULL,
url text,
model_name text NOT NULL,
embedding vector NOT NULL
);
2. 文本嵌入转换
使用本地运行的嵌入模型将客户反馈转换为向量:
CREATE OR REPLACE FUNCTION public.ollama_embedding(
_model text,
_input text,
_user text DEFAULT NULL,
_dimensions integer DEFAULT NULL
) RETURNS vector
LANGUAGE plpython3u
AS $$
from ollama import Client
client = Client(host='http://172.16.14.46:11434')
embedding_dict = client.embeddings(model=_model, prompt=_input)
return embedding_dict['embedding']
$$;
3. 相似性检索
通过向量相似度查找与业务问题最相关的客户反馈:
WITH question AS (
SELECT '为什么披萨销量下降?' AS question,
'shaw/dmeta-embedding-zh:latest' AS model
),
emb_question AS (
SELECT question, ollama_embedding(model, question) AS embedding
FROM question
)
SELECT question, content, te1.embedding <-> te2.embedding AS similarity
FROM t_embeddings_dmeta te1 CROSS JOIN emb_question te2
ORDER BY te1.embedding <-> te2.embedding
LIMIT 3;
4. 报告生成
将检索结果输入大语言模型生成商业报告:
SELECT simple_chat_complete(
'https://openrouter.ai/api/v1',
'your_api_key',
'google/gemini-pro-1.5',
'生成商业报告回答用户问题...',
FALSE
) AS response_json;
系统优势
- 数据隐私保护:支持本地嵌入模型,敏感数据不出本地环境
- 成本效益:相比全量使用云API,显著降低运营成本
- 灵活扩展:可轻松切换不同的大语言模型和嵌入模型
- 高效检索:利用PostgreSQL的向量索引加速相似性搜索
实际效果展示
系统生成的商业报告示例:
### 披萨销量下降分析报告
**主要客户投诉点:**
1. 订单准确性:客户反映收到错误订单(如点热狗却收到披萨)
2. 食用体验:有客户因食用过多导致不适
3. 配料争议:菠萝配料引起部分客户不满
**改进建议:**
1. 加强订单管理系统准确性
2. 控制单份披萨大小
3. 提供更清晰的配料说明
总结
PGAI项目通过将PostgreSQL与AI技术深度整合,为企业提供了一套完整的私有数据智能分析解决方案。该系统不仅能够处理结构化数据,还能有效分析非结构化的客户反馈文本,帮助业务决策者快速发现问题并制定改进措施。这种技术组合特别适合需要处理大量客户反馈同时又重视数据隐私的企业场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1