使用PGAI构建基于RAG的客户反馈分析系统
2025-06-11 01:00:58作者:滑思眉Philip
引言
在现代商业环境中,理解客户反馈对于业务增长至关重要。本文将介绍如何利用PGAI项目构建一个基于检索增强生成(RAG)的客户反馈分析系统,通过结合PostgreSQL的强大数据管理能力和AI模型的智能分析能力,帮助企业从海量客户反馈中快速获取有价值的商业洞察。
技术架构概述
该系统由三个核心组件构成:
- 私有数据集:包含行业知识、最新业务数据和大量客户反馈
- 嵌入模型:将文本数据转换为数值向量,便于相似性计算
- 大语言模型:如Gemini、ChatGPT等,用于生成最终分析报告
实际应用场景
以一个披萨店订单下降分析为例,系统可以:
- 收集并存储客户反馈数据
- 通过语义搜索找出与"订单下降"相关的反馈
- 生成包含问题原因和建议的商业报告
关键技术实现
1. 数据准备
首先创建存储客户反馈的表结构,包含文本内容和嵌入向量:
CREATE TABLE public.t_embeddings_dmeta (
id bigserial PRIMARY KEY,
title text NOT NULL,
content text NOT NULL,
url text,
model_name text NOT NULL,
embedding vector NOT NULL
);
2. 文本嵌入转换
使用本地运行的嵌入模型将客户反馈转换为向量:
CREATE OR REPLACE FUNCTION public.ollama_embedding(
_model text,
_input text,
_user text DEFAULT NULL,
_dimensions integer DEFAULT NULL
) RETURNS vector
LANGUAGE plpython3u
AS $$
from ollama import Client
client = Client(host='http://172.16.14.46:11434')
embedding_dict = client.embeddings(model=_model, prompt=_input)
return embedding_dict['embedding']
$$;
3. 相似性检索
通过向量相似度查找与业务问题最相关的客户反馈:
WITH question AS (
SELECT '为什么披萨销量下降?' AS question,
'shaw/dmeta-embedding-zh:latest' AS model
),
emb_question AS (
SELECT question, ollama_embedding(model, question) AS embedding
FROM question
)
SELECT question, content, te1.embedding <-> te2.embedding AS similarity
FROM t_embeddings_dmeta te1 CROSS JOIN emb_question te2
ORDER BY te1.embedding <-> te2.embedding
LIMIT 3;
4. 报告生成
将检索结果输入大语言模型生成商业报告:
SELECT simple_chat_complete(
'https://openrouter.ai/api/v1',
'your_api_key',
'google/gemini-pro-1.5',
'生成商业报告回答用户问题...',
FALSE
) AS response_json;
系统优势
- 数据隐私保护:支持本地嵌入模型,敏感数据不出本地环境
- 成本效益:相比全量使用云API,显著降低运营成本
- 灵活扩展:可轻松切换不同的大语言模型和嵌入模型
- 高效检索:利用PostgreSQL的向量索引加速相似性搜索
实际效果展示
系统生成的商业报告示例:
### 披萨销量下降分析报告
**主要客户投诉点:**
1. 订单准确性:客户反映收到错误订单(如点热狗却收到披萨)
2. 食用体验:有客户因食用过多导致不适
3. 配料争议:菠萝配料引起部分客户不满
**改进建议:**
1. 加强订单管理系统准确性
2. 控制单份披萨大小
3. 提供更清晰的配料说明
总结
PGAI项目通过将PostgreSQL与AI技术深度整合,为企业提供了一套完整的私有数据智能分析解决方案。该系统不仅能够处理结构化数据,还能有效分析非结构化的客户反馈文本,帮助业务决策者快速发现问题并制定改进措施。这种技术组合特别适合需要处理大量客户反馈同时又重视数据隐私的企业场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134