使用PGAI构建基于RAG的客户反馈分析系统
2025-06-11 07:14:16作者:滑思眉Philip
引言
在现代商业环境中,理解客户反馈对于业务增长至关重要。本文将介绍如何利用PGAI项目构建一个基于检索增强生成(RAG)的客户反馈分析系统,通过结合PostgreSQL的强大数据管理能力和AI模型的智能分析能力,帮助企业从海量客户反馈中快速获取有价值的商业洞察。
技术架构概述
该系统由三个核心组件构成:
- 私有数据集:包含行业知识、最新业务数据和大量客户反馈
- 嵌入模型:将文本数据转换为数值向量,便于相似性计算
- 大语言模型:如Gemini、ChatGPT等,用于生成最终分析报告
实际应用场景
以一个披萨店订单下降分析为例,系统可以:
- 收集并存储客户反馈数据
- 通过语义搜索找出与"订单下降"相关的反馈
- 生成包含问题原因和建议的商业报告
关键技术实现
1. 数据准备
首先创建存储客户反馈的表结构,包含文本内容和嵌入向量:
CREATE TABLE public.t_embeddings_dmeta (
id bigserial PRIMARY KEY,
title text NOT NULL,
content text NOT NULL,
url text,
model_name text NOT NULL,
embedding vector NOT NULL
);
2. 文本嵌入转换
使用本地运行的嵌入模型将客户反馈转换为向量:
CREATE OR REPLACE FUNCTION public.ollama_embedding(
_model text,
_input text,
_user text DEFAULT NULL,
_dimensions integer DEFAULT NULL
) RETURNS vector
LANGUAGE plpython3u
AS $$
from ollama import Client
client = Client(host='http://172.16.14.46:11434')
embedding_dict = client.embeddings(model=_model, prompt=_input)
return embedding_dict['embedding']
$$;
3. 相似性检索
通过向量相似度查找与业务问题最相关的客户反馈:
WITH question AS (
SELECT '为什么披萨销量下降?' AS question,
'shaw/dmeta-embedding-zh:latest' AS model
),
emb_question AS (
SELECT question, ollama_embedding(model, question) AS embedding
FROM question
)
SELECT question, content, te1.embedding <-> te2.embedding AS similarity
FROM t_embeddings_dmeta te1 CROSS JOIN emb_question te2
ORDER BY te1.embedding <-> te2.embedding
LIMIT 3;
4. 报告生成
将检索结果输入大语言模型生成商业报告:
SELECT simple_chat_complete(
'https://openrouter.ai/api/v1',
'your_api_key',
'google/gemini-pro-1.5',
'生成商业报告回答用户问题...',
FALSE
) AS response_json;
系统优势
- 数据隐私保护:支持本地嵌入模型,敏感数据不出本地环境
- 成本效益:相比全量使用云API,显著降低运营成本
- 灵活扩展:可轻松切换不同的大语言模型和嵌入模型
- 高效检索:利用PostgreSQL的向量索引加速相似性搜索
实际效果展示
系统生成的商业报告示例:
### 披萨销量下降分析报告
**主要客户投诉点:**
1. 订单准确性:客户反映收到错误订单(如点热狗却收到披萨)
2. 食用体验:有客户因食用过多导致不适
3. 配料争议:菠萝配料引起部分客户不满
**改进建议:**
1. 加强订单管理系统准确性
2. 控制单份披萨大小
3. 提供更清晰的配料说明
总结
PGAI项目通过将PostgreSQL与AI技术深度整合,为企业提供了一套完整的私有数据智能分析解决方案。该系统不仅能够处理结构化数据,还能有效分析非结构化的客户反馈文本,帮助业务决策者快速发现问题并制定改进措施。这种技术组合特别适合需要处理大量客户反馈同时又重视数据隐私的企业场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869