首页
/ HFTBacktest项目中现货与期货资产类型的配置方法

HFTBacktest项目中现货与期货资产类型的配置方法

2025-06-30 12:19:04作者:廉皓灿Ida

资产类型配置的基本概念

在HFTBacktest高频交易回测框架中,资产类型的正确配置对于准确模拟交易环境至关重要。框架提供了灵活的资产类型设置选项,包括现货(spot)和期货(futures)两种主要类型。

值得注意的是,虽然框架使用linear_asset(线性资产)和inverse_asset(反向资产)这两个术语,但它们并不特指期货合约。这些术语实际上定义了资产价值和交易金额的计算方式。现货资产本质上属于线性资产,因此在配置现货时直接使用linear_asset方法即可。

现货资产的配置方法

配置现货资产时,开发者需要使用linear_asset方法,并传入合约大小为1.0的参数。这是因为现货交易中,资产价值与报价价格呈1:1的线性关系。以下是一个典型的现货资产配置示例:

spot_asset = (
    BacktestAsset()
        .data(['data/btcusdt_20230801.npz'])
        .initial_snapshot('data/btcusdt_20230731_eod.npz')
        .linear_asset(1.0)  # 现货使用线性资产配置
        .constant_latency(10_000_000, 10_000_000)
        .risk_adverse_queue_model()
        .no_partial_fill_exchange()
        .trading_value_fee_model(0.0002, 0.0007)
        .tick_size(0.1)
        .lot_size(0.001)
)

期货资产的配置

期货资产同样可以使用linear_asset方法进行配置,特别是对于线性合约。对于反向合约,则需要使用inverse_asset方法。两者的主要区别在于价值计算方式:

linear_futures = (
    BacktestAsset()
        .data(['data/btcusdt_linear_20230801.npz'])
        .initial_snapshot('data/btcusdt_linear_20230731_eod.npz')
        .linear_asset(1.0)  # 线性期货合约
        
inverse_futures = (
    BacktestAsset()
        .data(['data/btcusdt_inverse_20230801.npz'])
        .initial_snapshot('data/btcusdt_inverse_20230731_eod.npz')
        .inverse_asset(100.0)  # 反向期货合约,参数为合约乘数
)

多资产类型组合回测

在实际交易策略中,经常需要同时考虑现货和期货市场的数据。HFTBacktest支持在同一回测环境中配置多种资产类型。每种资产都会被分配一个唯一的asset_no(资产编号),在策略逻辑中可以通过这个编号来区分不同的资产。

# 配置现货资产
spot = (
    BacktestAsset()
        .data(['spot_data.npz'])
        .linear_asset(1.0)
        # 其他配置参数...
)

# 配置线性期货资产
futures = (
    BacktestAsset()
        .data(['futures_data.npz'])
        .linear_asset(1.0)
        # 其他配置参数...
)

# 创建回测环境,spot的asset_no为0,futures的asset_no为1
hbt = ROIVectorMarketDepthBacktest([spot, futures])

性能优化建议

当策略只需要参考现货价格而不需要完整订单簿数据时,可以考虑使用自定义数据集成方式,只导入必要的价格信息。这种方法可以显著提高回测速度,因为它避免了完整订单簿数据的逐笔回放。

对于需要完整市场深度数据的策略,则应该配置完整的资产数据。在回测复杂策略时,合理选择数据导入方式可以在保证准确性的同时优化性能。

总结

HFTBacktest框架提供了灵活的资产类型配置选项,使开发者能够准确模拟各种交易环境。理解线性资产和反向资产的本质区别,以及掌握多资产组合配置方法,对于开发复杂的高频交易策略至关重要。在实际应用中,应根据策略需求选择合适的配置方式,平衡回测准确性和性能效率。

登录后查看全文
热门项目推荐
相关项目推荐