HFTBacktest项目中现货与期货资产类型的配置方法
资产类型配置的基本概念
在HFTBacktest高频交易回测框架中,资产类型的正确配置对于准确模拟交易环境至关重要。框架提供了灵活的资产类型设置选项,包括现货(spot)和期货(futures)两种主要类型。
值得注意的是,虽然框架使用linear_asset(线性资产)和inverse_asset(反向资产)这两个术语,但它们并不特指期货合约。这些术语实际上定义了资产价值和交易金额的计算方式。现货资产本质上属于线性资产,因此在配置现货时直接使用linear_asset方法即可。
现货资产的配置方法
配置现货资产时,开发者需要使用linear_asset方法,并传入合约大小为1.0的参数。这是因为现货交易中,资产价值与报价价格呈1:1的线性关系。以下是一个典型的现货资产配置示例:
spot_asset = (
BacktestAsset()
.data(['data/btcusdt_20230801.npz'])
.initial_snapshot('data/btcusdt_20230731_eod.npz')
.linear_asset(1.0) # 现货使用线性资产配置
.constant_latency(10_000_000, 10_000_000)
.risk_adverse_queue_model()
.no_partial_fill_exchange()
.trading_value_fee_model(0.0002, 0.0007)
.tick_size(0.1)
.lot_size(0.001)
)
期货资产的配置
期货资产同样可以使用linear_asset方法进行配置,特别是对于线性合约。对于反向合约,则需要使用inverse_asset方法。两者的主要区别在于价值计算方式:
linear_futures = (
BacktestAsset()
.data(['data/btcusdt_linear_20230801.npz'])
.initial_snapshot('data/btcusdt_linear_20230731_eod.npz')
.linear_asset(1.0) # 线性期货合约
inverse_futures = (
BacktestAsset()
.data(['data/btcusdt_inverse_20230801.npz'])
.initial_snapshot('data/btcusdt_inverse_20230731_eod.npz')
.inverse_asset(100.0) # 反向期货合约,参数为合约乘数
)
多资产类型组合回测
在实际交易策略中,经常需要同时考虑现货和期货市场的数据。HFTBacktest支持在同一回测环境中配置多种资产类型。每种资产都会被分配一个唯一的asset_no(资产编号),在策略逻辑中可以通过这个编号来区分不同的资产。
# 配置现货资产
spot = (
BacktestAsset()
.data(['spot_data.npz'])
.linear_asset(1.0)
# 其他配置参数...
)
# 配置线性期货资产
futures = (
BacktestAsset()
.data(['futures_data.npz'])
.linear_asset(1.0)
# 其他配置参数...
)
# 创建回测环境,spot的asset_no为0,futures的asset_no为1
hbt = ROIVectorMarketDepthBacktest([spot, futures])
性能优化建议
当策略只需要参考现货价格而不需要完整订单簿数据时,可以考虑使用自定义数据集成方式,只导入必要的价格信息。这种方法可以显著提高回测速度,因为它避免了完整订单簿数据的逐笔回放。
对于需要完整市场深度数据的策略,则应该配置完整的资产数据。在回测复杂策略时,合理选择数据导入方式可以在保证准确性的同时优化性能。
总结
HFTBacktest框架提供了灵活的资产类型配置选项,使开发者能够准确模拟各种交易环境。理解线性资产和反向资产的本质区别,以及掌握多资产组合配置方法,对于开发复杂的高频交易策略至关重要。在实际应用中,应根据策略需求选择合适的配置方式,平衡回测准确性和性能效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00