CKAN 开源数据门户软件技术文档
2024-12-25 04:37:02作者:房伟宁
1. 安装指南
1.1 系统要求
在安装CKAN之前,请确保您的系统满足以下要求:
- 操作系统:Linux(推荐使用Ubuntu)
- 数据库:PostgreSQL(推荐版本9.6或更高)
- 缓存:Redis
- 搜索引擎:Solr(推荐版本7.x或8.x)
1.2 安装步骤
-
安装依赖项:
sudo apt-get update sudo apt-get install python3-dev postgresql libpq-dev python3-pip python3-venv git-core solr-jetty openjdk-8-jdk redis-server -
创建虚拟环境:
python3 -m venv /path/to/virtualenv source /path/to/virtualenv/bin/activate -
安装CKAN:
pip install -e 'git+https://github.com/ckan/ckan.git@ckan-2.9.5#egg=ckan' pip install -r /path/to/virtualenv/src/ckan/requirements.txt -
配置数据库:
sudo -u postgres createuser -S -D -R -P ckan_default sudo -u postgres createdb -O ckan_default ckan_default -E utf-8 -
配置Solr:
sudo vim /etc/solr/conf/schema.xml将
schema.xml替换为CKAN提供的schema.xml文件。 -
配置CKAN:
cp /path/to/virtualenv/src/ckan/ckan/config/production.ini /etc/ckan/production.ini vim /etc/ckan/production.ini根据您的需求修改配置文件。
-
启动CKAN:
paster serve /etc/ckan/production.ini
2. 项目使用说明
2.1 数据发布
CKAN提供了一个易于使用的界面,用户可以通过该界面发布、共享和管理数据集。用户可以上传数据文件,添加元数据,并设置数据集的访问权限。
2.2 数据搜索
CKAN内置了强大的搜索功能,用户可以通过关键词、标签、组织等多种方式搜索数据集。搜索结果可以按相关性、发布时间等进行排序。
2.3 数据可视化
CKAN支持多种数据可视化工具,用户可以直接在平台上生成图表、地图等可视化内容,帮助更好地理解和分析数据。
3. 项目API使用文档
3.1 API概述
CKAN提供了一套完整的RESTful API,允许开发者通过编程方式访问和管理数据集。API支持多种操作,包括数据集的创建、更新、删除,以及数据的查询和下载。
3.2 API示例
-
获取数据集列表:
curl http://yourdomain.com/api/3/action/package_list -
创建数据集:
curl -X POST http://yourdomain.com/api/3/action/package_create -d '{"name": "mydataset", "title": "My Dataset"}' -
更新数据集:
curl -X POST http://yourdomain.com/api/3/action/package_update -d '{"id": "mydataset", "title": "Updated Dataset"}' -
删除数据集:
curl -X POST http://yourdomain.com/api/3/action/package_delete -d '{"id": "mydataset"}'
4. 项目安装方式
CKAN的安装方式主要有两种:
- 源码安装:通过克隆GitHub仓库并手动安装依赖项和配置文件。
- Docker安装:使用Docker容器化技术,快速部署CKAN环境。
4.1 源码安装
如前所述,源码安装需要手动配置虚拟环境、数据库、Solr等组件。
4.2 Docker安装
-
安装Docker:
sudo apt-get install docker.io -
拉取CKAN镜像:
docker pull ckan/ckan -
运行CKAN容器:
docker run -d -p 5000:5000 ckan/ckan
通过以上步骤,您可以快速启动一个CKAN实例,并开始使用其强大的数据管理功能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869