mvfst 项目教程
1. 项目介绍
mvfst(发音为“move fast”)是 Facebook 开发的一个 C++ 实现的 IETF QUIC 协议的客户端和服务器端。QUIC 是一种基于 UDP 的可靠、多路复用的传输协议,旨在成为互联网标准。mvfst 的目标是构建一个高性能的 QUIC 传输协议实现,适用于互联网和数据中心的应用场景。
mvfst 已经在 Android 和 iOS 应用以及服务器上进行了大规模测试,并具备多种特性以支持大规模部署。
主要特性
-
服务器特性:
- 多线程 UDP 服务器,采用线程本地架构,能够扩展到多核服务器。
- 可定制的 Connection-Id 路由,默认实现与 katran API 集成,支持零停机重启服务器。
- 零 RTT 连接建立和可定制的零 RTT 路径验证。
- 支持 UDP 通用分段卸载(GSO)以加速 UDP 写入。
-
客户端特性:
- 原生 IPv4 和 IPv6 之间的 Happy Eyeballs 支持,应用程序无需自行实现。
- 可插拔的拥塞控制,支持关闭拥塞控制以插入应用程序特定的控制算法。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统已经安装了以下依赖:
- Python 3.6 或更高版本
- CMake
- 其他构建工具(如
make、gcc等)
2.2 克隆项目
首先,克隆 mvfst 项目到本地:
git clone https://github.com/facebookincubator/mvfst.git
cd mvfst
2.3 构建项目
使用 getdeps.py 脚本进行构建:
./build/fbcode_builder/getdeps.py build mvfst --install-prefix=$(pwd)/_build
2.4 运行示例客户端和服务器
构建完成后,可以在 _build 目录下找到示例客户端和服务器:
cd $(python3 ./build/fbcode_builder/getdeps.py show-build-dir mvfst)/quic/samples/echo
启动服务器:
./echo -mode=server -host=::1 -port=4433
启动客户端:
./echo -mode=client -host=::1 -port=4433
3. 应用案例和最佳实践
3.1 大规模部署
mvfst 已经在 Facebook 的 Android 和 iOS 应用中进行了大规模测试,并且在大规模服务器部署中表现出色。其多线程架构和可定制的 Connection-Id 路由使其能够轻松扩展到多核服务器。
3.2 零停机重启
通过与 katran API 集成,mvfst 支持零停机重启服务器,确保应用程序在重启时不会丢失连接。
3.3 高性能 UDP 写入
mvfst 支持 UDP 通用分段卸载(GSO),可以显著提高 UDP 写入的性能,适用于需要高吞吐量的应用场景。
4. 典型生态项目
4.1 Proxygen
Proxygen 是 Facebook 开发的一个 HTTP/3 实现,使用了 mvfst 作为其 QUIC 传输层。Proxygen 提供了完整的 HTTP/3 支持,适用于需要高性能和低延迟的 Web 服务。
4.2 katran
katran 是 Facebook 开发的一个高性能第 4 层负载均衡器,与 mvfst 集成,提供了零停机重启和 Connection-Id 路由等功能。
4.3 folly
folly 是 Facebook 开发的一个 C++ 库集合,提供了许多高性能的数据结构和算法。mvfst 依赖于 folly 进行构建和运行。
通过这些生态项目,mvfst 可以与其他高性能基础设施组件无缝集成,提供全面的解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00