JobRunr性能优化:解决后台任务指标收集的CPU开销问题
2025-06-30 10:47:57作者:卓炯娓
在分布式任务调度框架JobRunr的使用过程中,开发团队发现了一个影响性能的关键问题:当通过Prometheus端点收集监控指标时,响应时间异常延长。经过深入分析,发现问题根源在于后台任务指标收集的实现方式上。
问题本质
JobRunr的后台任务监控指标收集机制存在一个设计缺陷:每当检查一个Gauge指标时,系统都会创建一个新的BackgroundJobServerStatus实例。这个实例在构造函数中会立即计算并填充所有监控细节,包括CPU使用率等指标。
这种实现方式导致了两个严重问题:
- 每次指标收集都会触发完整的CPU使用率计算
- 即使某些指标并不需要CPU数据,系统也会无条件执行这些高开销计算
从性能分析火焰图可以清楚地看到,这个操作消耗了整个指标收集过程90%的时间,造成了严重的资源浪费。
解决方案
开发团队采用了"延迟加载"的设计模式来优化这个问题:
- 将CPU使用率计算从构造函数中移除
- 改为按需计算,只有当确实需要CPU指标时才执行相关计算
- 保持其他轻量级指标的即时计算
这种优化方式完美遵循了"不要为不需要的东西付费"的性能优化原则,特别适合监控系统这种对性能敏感的场景。
技术实现细节
优化后的实现主要做了以下改进:
- 重构BackgroundJobServerStatus类,将CPU相关计算分离到独立方法
- 修改指标收集逻辑,只在查询CPU相关指标时触发计算
- 保持原有API接口不变,确保向后兼容
- 对线程安全性进行验证,确保多线程环境下的正确性
优化效果
这种优化带来了显著的性能提升:
- 指标收集响应时间大幅缩短
- 系统整体CPU使用率下降
- Prometheus抓取端点不再成为性能瓶颈
- 监控系统对业务应用的影响降到最低
版本发布
该优化已经包含在JobRunr v8版本中,并以热修复形式回传到JobRunr Pro v7.5版本。使用这些版本的用户可以自动获得这些性能改进。
总结
这个案例展示了监控系统实现中常见的性能陷阱 - 过度计算。通过将高开销操作改为按需执行,JobRunr团队显著提升了系统性能。这也提醒我们,在实现监控指标时,应该仔细考虑每个指标的计算成本,并尽可能采用延迟计算策略。
对于需要高性能任务调用的系统,建议用户升级到包含此优化的版本,以获得更好的整体性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350