Google Gemini Cookbook 项目中的 JSON 响应模式问题解析
问题背景
在使用 Google Gemini API 进行 JSON 格式输出时,开发者遇到了两个典型问题。第一个问题是当尝试使用 TypedDict 定义响应模式时出现的 KeyError 异常,第二个问题是 JSON 响应中字段缺失的情况。
技术细节分析
KeyError 异常问题
这个问题的根源在于 Pydantic 版本兼容性。当开发者使用 TypedDict 定义响应模式时,系统内部会尝试将其转换为 Pydantic 模型。在 Pydantic v1 环境下,这个转换过程会出现 KeyError 异常,具体表现为无法正确解析类型定义中的引用。
解决方案相对简单:升级到 Pydantic v2 即可解决。测试表明,将 Pydantic 从 1.10.14 升级到 2.8.2,同时将 pydantic_core 从 2.14.6 升级到 2.20.1 后,问题得到解决。
JSON 响应字段缺失问题
另一个常见问题是 JSON 响应中只包含部分字段。例如,当定义一个包含 index 和 content 两个字段的 TypedDict 时,API 可能只返回 index 字段。这个问题在官方文档示例中也存在,表明这可能是 API 的一个已知限制。
最佳实践建议
-
版本管理:确保使用 Pydantic v2 及以上版本,这是与 Gemini API 配合使用的基础要求。
-
简单数据结构:在设计响应模式时,尽量使用简单的数据结构。复杂嵌套类型可能会引发解析问题。
-
逐步验证:在实现复杂功能前,先用简单示例验证 API 的基本功能是否正常。
-
错误处理:在代码中加入适当的错误处理逻辑,特别是对 API 返回的数据进行完整性检查。
技术实现示例
以下是一个经过验证可用的代码示例:
from google import generativeai as genai
from typing import TypedDict
class Character(TypedDict):
name: str
description: str
class SummaryResponse(TypedDict):
synopsis: str
characters: list[Character]
model = genai.GenerativeModel(
model_name="gemini-1.5-pro-latest",
generation_config={
"response_mime_type": "application/json",
"response_schema": SummaryResponse
}
)
总结
Google Gemini API 的 JSON 输出功能虽然强大,但在使用过程中需要注意版本兼容性和数据结构设计。通过遵循上述建议,开发者可以更有效地利用这一功能,构建稳定的应用程序。对于更复杂的需求,建议分阶段实现,并充分测试每个阶段的输出结果。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00