Docling项目中的PDF转MD中文乱码问题解析与解决方案
背景介绍
Docling作为一款文档转换工具,在PDF转Markdown(MD)格式的过程中,用户反馈遇到了简体中文显示乱码的问题。这一问题主要出现在使用命令行接口(CLI)进行转换时,生成的MD文件中所有简体中文字符都变成了无法识别的乱码。
问题根源分析
经过技术团队深入调查,发现该问题的根本原因在于EasyOCR的默认语言配置。EasyOCR作为Docling项目中的OCR(光学字符识别)组件,其默认语言设置仅支持英语(en)、法语(fr)、德语(de)和西班牙语(es)四种语言,而简体中文(ch_sim)并未包含在默认配置中。
当用户尝试转换包含简体中文的PDF文档时,由于OCR引擎无法正确识别中文字符,导致最终输出的MD文件出现乱码现象。这一问题不仅影响简体中文,其他非默认支持的语言(如葡萄牙语)也会遇到类似问题。
解决方案
针对这一问题,Docling技术团队提供了两种解决方案:
1. 通过代码配置解决
对于直接使用DocumentConverter API的用户,可以通过修改EasyOCR的语言配置来支持简体中文:
ocr_options = EasyOcrOptions(lang=['en', 'ch_sim'])
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.ocr_options = ocr_options
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
同样地,对于需要支持其他语言的用户(如葡萄牙语),只需将'ch_sim'替换为相应语言代码(如'pt')即可。
2. 通过命令行接口解决
从Docling 2.6.0版本开始,CLI用户可以直接通过命令行参数指定OCR语言。使用方式如下:
docling convert input.pdf output.md --ocr-langs en,ch_sim
这一改进使得非技术用户也能轻松解决多语言支持问题,无需修改代码即可实现中文PDF的正确转换。
技术实现细节
Docling在v2.6.0版本中实现了对多语言OCR的完整支持,主要改进包括:
- 扩展了EasyOCR的语言配置接口,使其能够接受用户自定义的语言列表
- 在CLI中添加了
--ocr-langs参数,支持以逗号分隔的语言代码列表 - 优化了字符编码处理流程,确保非拉丁字符集能够正确转换和保存
最佳实践建议
为了获得最佳的PDF转换体验,特别是处理中文文档时,建议用户:
- 始终使用最新版本的Docling工具
- 明确指定需要识别的语言,包括英文和中文(如
en,ch_sim) - 对于混合语言文档,按使用频率排序语言代码(高频语言在前)
- 复杂文档转换前,先使用小样本测试OCR效果
总结
Docling项目通过持续改进,已经很好地解决了PDF转MD过程中的中文乱码问题。无论是通过API还是CLI,用户现在都能轻松实现中文文档的高质量转换。这一问题的解决不仅提升了工具的中文支持能力,也为其他非拉丁语系语言的用户提供了可靠的解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00