Evidence项目中的Vite依赖优化问题分析与解决方案
问题背景
在Evidence项目开发过程中,开发团队发现了一个影响开发体验的性能问题:当使用npm exec evidence dev命令启动开发服务器时,Vite会在服务器启动后立即触发依赖优化过程(OptimizeDeps),导致启动时间显著延长(示例中显示为1145毫秒)。这不仅影响了开发效率,还对某些客户项目产生了下游影响。
问题现象
具体表现为:
- 服务器启动后立即显示"Forced re-optimization of dependencies"(强制重新优化依赖)
- 随后Vite会优化两个特定依赖:
@evidence-dev/sdk/usql和blueimp-md5 - 优化完成后触发页面重新加载
这个过程使得开发服务器的启动时间大幅增加,特别是在端口被占用需要切换时(如示例中从3000切换到3001端口),整体体验不够流畅。
技术分析
这个问题核心在于Vite的依赖预构建机制。Vite作为现代前端构建工具,会在开发服务器启动时对项目依赖进行预构建(即OptimizeDeps),目的是:
- 将CommonJS模块转换为ESM格式
- 合并多个小文件以减少请求数量
- 提升后续开发过程中的模块加载速度
在Evidence项目中,问题出现的原因是:
- 项目模板构建脚本(evidence/scripts/build-template.js)没有完整包含所有需要预构建的依赖项
- 特别是
@evidence-dev/sdk/usql和blueimp-md5这两个依赖没有被正确识别为需要预构建的依赖 - 导致Vite在服务器启动后发现新的依赖需要优化,触发了额外的构建过程
解决方案
要解决这个问题,需要从以下几个方面入手:
-
完善模板构建脚本: 修改evidence/scripts/build-template.js文件,确保包含所有必要的依赖项,特别是已识别的
@evidence-dev/sdk/usql和blueimp-md5。 -
优化Vite配置: 在vite.config.js中显式指定需要预构建的依赖项,可以通过
optimizeDeps.include配置项实现。 -
依赖分析: 对项目依赖树进行全面分析,确保没有其他潜在的未被预构建的依赖项。
-
构建缓存利用: 确保Vite能够正确缓存预构建结果,避免每次启动都重新构建。
实施建议
具体实施时可以考虑以下步骤:
- 更新build-template.js脚本,添加遗漏的依赖项
- 在Vite配置中添加:
optimizeDeps: { include: ['@evidence-dev/sdk/usql', 'blueimp-md5'] } - 进行全面的依赖分析,使用
vite-plugin-optimize-persist等工具辅助识别需要预构建的依赖 - 验证缓存机制是否正常工作,确保开发服务器重启时能重用之前的预构建结果
预期效果
通过上述改进,预期能够:
- 消除服务器启动后的额外依赖优化过程
- 显著缩短开发服务器启动时间
- 提升整体开发体验
- 避免对客户项目产生下游影响
总结
Evidence项目中遇到的这个Vite依赖优化问题,本质上是构建配置不完整导致的性能问题。通过完善构建脚本和优化Vite配置,可以有效地解决这个问题,提升开发效率。这也提醒我们在项目开发中要重视构建工具的配置优化,特别是对于依赖预构建这种影响开发体验的关键环节。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00