碧蓝航线Alas脚本终极使用指南:从零开始的全自动游戏体验
碧蓝航线Alas脚本是目前功能最全面的游戏自动化工具,支持国服、国际服、日服和台服等多个服务器。这款开源免费的脚本能够接管几乎所有碧蓝航线玩法,从日常收菜到大型活动,从主线推图到大世界探索,为指挥官们提供7x24小时不间断的自动化服务,让您真正实现"把一切都交给Alas"的游戏理念。
🚀 项目核心亮点:为什么选择Alas?
Alas脚本拥有多项突出特性,使其在同类工具中脱颖而出:
智能心情控制系统 - 自动计算心情值,防止红脸同时保持120以上心情的经验加成状态。Alas会预先计算等待时间,在心情值恢复后再继续出击,最大化经验获取效率。
无缝收菜机制 - 时间管理大师级别的任务调度,能够精确计算委托、科研等任务的完成时间,完成后立即收获,不浪费任何资源。
大世界完整解决方案 - 一条龙完成大世界所有内容,包括余烬信标、隐秘海域、塞壬要塞等复杂玩法。
⚡ 5分钟快速上手:新手零基础配置指南
环境准备与安装
首先需要下载项目代码并安装必要的依赖:
git clone https://gitcode.com/gh_mirrors/az/AzurLaneAutoScript
cd AzurLaneAutoScript
pip install -r requirements.txt
首次运行配置
- 启动Alas主程序:
python alas.py - 在GUI界面中选择对应的游戏服务器
- 配置模拟器连接参数
- 点击"开始运行"按钮
Alas会自动识别游戏界面并开始执行预设任务。首次运行时建议从简单的委托任务开始测试。
🎯 场景化应用方案:按需定制你的自动化
日常收菜自动化配置
对于时间有限的指挥官,可以启用以下核心任务:
- 委托管理:自动收取完成委托,重新派遣新任务
- 科研收获:定时收取完成的科研项目
- 后宅经验:自动收取后宅经验,保持舰娘心情
- 战术学院:自动学习技能,提升舰队实力
大型活动期间优化策略
活动期间是资源获取的关键时期,Alas提供了专门的优化方案:
SP图刷取 - 设置高优先级,确保活动代币获取最大化。
EX挑战 - 配置挑战次数和难度选择,智能应对高难度关卡。
故事关卡 - 自动完成剧情解锁,不遗漏任何奖励。
大世界深度探索配置
Alas的大世界模块支持完整的自动化流程:
- 余烬信标:自动识别并挑战,优化舰队配置
- 隐秘海域:定时清理,确保不漏掉任何资源点
- 塞壬要塞:智能选择攻略路线,提升通关效率
🔧 进阶玩法探索:解锁隐藏功能
多账号轮换管理
通过编辑配置文件,可以实现多个账号的自动化轮换:
accounts:
- name: "账号1"
tasks: ["委托", "科研", "后宅"]
- name: "账号2"
tasks: ["大世界", "活动图"]
自定义任务流程
Alas支持高度自定义的任务配置,您可以根据个人需求创建专属的自动化流程。
🛠️ 问题诊断中心:常见故障快速解决
网络连接问题处理
当出现网络波动或重连弹窗时:
- 检查模拟器网络设置
- 确认游戏服务器状态
- 重启Alas脚本重新连接
识别精度优化方案
如果遇到界面识别错误:
- 调整游戏分辨率至标准比例
- 关闭不必要的视觉特效
- 运行校准功能更新模板
性能调优建议
高配电脑:缩短操作间隔,提升运行速度 普通配置:适当延长间隔,确保稳定性
📊 资源管理策略:智能控制避免浪费
Alas提供了精细化的资源控制功能:
- 石油消耗:设置每日使用上限,保持资源平衡
- 物资分配:根据需求优先级自动购买商店物品
心情值智能控制
Alas的心情控制机制以预防为主:
- 当前心情值113,后宅二楼恢复速度+50/h
- 未婚状态下恢复速度+0/h
- Alas会自动等待12分钟,待心情值恢复到120以上再继续出击
💡 使用技巧与最佳实践
正确使用调度器
错误做法:只开启一两个任务,手动管理 正确做法:启用全部有用任务,让调度器自动调度
把模拟器和Alas都最小化到托盘,忘记碧蓝航线这个游戏,让Alas为您处理一切。
游戏设置优化
为确保最佳运行效果,请按照以下标准设置游戏:
| 设置名称 | 推荐值 |
|---|---|
| 帧数设置 | 60帧 |
| 大型作战设置-减少TB引导 | 开 |
| 剧情自动播放 | 开启 |
- 剧情自动播放速度调整 | 特快 |
通过本指南的系统学习,您将能够充分发挥碧蓝航线Alas脚本的强大功能,实现真正的全自动游戏体验。记住合理使用脚本,享受游戏乐趣才是最终目的。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00