PreLAR 的项目扩展与二次开发
2025-05-24 08:07:50作者:侯霆垣
项目的基础介绍
PreLAR(World Model Pre-training with Learnable Action Representation)是一个基于PyTorch的开源项目,旨在通过可学习的动作表示进行世界模型预训练。该项目是计算机视觉领域的一项研究工作,主要解决视觉控制任务中的模型基于RL(Reinforcement Learning,强化学习)的样本效率问题。
项目的核心功能
PreLAR的核心功能是引入了一种动作条件的世界模型预训练方案,该方案基于无动作视频来采样高效地执行视觉控制任务。具体来说,它通过以下步骤实现:
- 预训练世界模型:使用无动作视频对世界模型进行预训练。
- 精细调整世界模型:在实际任务中,通过真实的动作数据对预训练的世界模型进行精细调整。
项目使用了哪些框架或库?
该项目主要使用了以下框架或库:
- PyTorch:深度学习框架,用于构建和训练神经网络模型。
- MuJoCo:物理引擎,用于模拟机器人运动和交互。
- Meta-world:用于强化学习研究的一个工具包,提供了多种机器人任务环境。
- Wandb(Weights & Biases):用于实验跟踪和管理的工具。
项目的代码目录及介绍
项目的代码目录结构如下:
- assets:包含项目相关的资源文件。
- configs:存储不同配置文件,用于模型训练和任务设置。
- data:存放数据集相关文件,如视频帧提取脚本和数据处理脚本。
- examples:包含训练和测试的示例脚本。
- wmlib:可能包含项目自定义的库和模块。
- .gitignore:指定Git忽略的文件和目录。
- LICENSE:项目许可证文件。
- README.md:项目说明文件。
- environment.yaml:定义项目所需的Python环境和依赖。
对项目进行扩展或者二次开发的方向
- 增强模型泛化能力:可以通过增加更多类型的数据集来训练模型,提高其在不同环境下的泛化能力。
- 集成更多强化学习算法:将项目与更多强化学习算法集成,探索不同算法对模型性能的影响。
- 扩展应用场景:将PreLAR应用于更多实际的机器人控制任务中,如自动驾驶、无人机控制等。
- 优化训练流程:通过改进训练脚本和流程,提高训练效率和模型性能。
- 用户界面开发:为项目开发一个用户友好的图形界面,使得非技术用户也能轻松使用和测试模型。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
288
2.59 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
225
304
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
604
181
暂无简介
Dart
575
127
Ascend Extension for PyTorch
Python
114
144
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
75
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
136
57