TinyObjLoader 开源项目教程
2024-10-09 11:40:03作者:伍霜盼Ellen
1. 项目介绍
TinyObjLoader 是一个轻量级但功能强大的单文件 Wavefront OBJ 加载器,使用 C++03 编写,无依赖项,仅依赖于 C++ STL。它能够解析超过 1000 万个多边形,具有适度的内存和时间消耗。TinyObjLoader 非常适合嵌入到您的全局光照渲染器中。
主要特点
- 轻量级: 单文件实现,无外部依赖。
- 高效: 能够解析大量多边形数据。
- 多平台支持: 支持 C++03 编译器。
- 扩展性: 支持回调 API 和双精度支持。
- Python 绑定: 提供 Python 绑定,方便在 Python 环境中使用。
2. 项目快速启动
安装
您可以选择将头文件直接复制到您的项目中,并确保在代码中定义 TINYOBJLOADER_IMPLEMENTATION 一次。
#define TINYOBJLOADER_IMPLEMENTATION
#include "tiny_obj_loader.h"
示例代码
以下是一个简单的示例代码,展示如何加载一个 OBJ 文件并打印其顶点信息。
#include <iostream>
#include "tiny_obj_loader.h"
int main() {
tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials;
std::string warn;
std::string err;
bool ret = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, "model.obj");
if (!warn.empty()) {
std::cout << "WARN: " << warn << std::endl;
}
if (!err.empty()) {
std::cerr << err << std::endl;
}
if (!ret) {
exit(1);
}
std::cout << "Loaded " << shapes.size() << " shapes" << std::endl;
for (size_t s = 0; s < shapes.size(); s++) {
std::cout << "Shape " << s << " has " << shapes[s].mesh.indices.size() << " vertices" << std::endl;
}
return 0;
}
3. 应用案例和最佳实践
应用案例
TinyObjLoader 已被广泛应用于各种项目中,包括但不限于:
- Vulkan 教程: 用于加载模型数据。
- Metal 渲染器: 用于加载 OBJ 文件。
- CUDA 体素化引擎: 用于处理 3D 模型数据。
- 全局光照渲染器: 用于嵌入式 OBJ 加载器。
最佳实践
- 性能优化: 对于大型模型,建议使用回调 API 来处理数据,以减少内存占用。
- 错误处理: 在加载 OBJ 文件时,务必检查警告和错误信息,以确保数据加载的正确性。
- 多线程支持: 如果您的应用是多线程的,可以考虑在加载 OBJ 文件时使用线程安全的回调函数。
4. 典型生态项目
TinyObjLoader 作为一个轻量级的 OBJ 加载器,与其他开源项目结合使用可以实现更复杂的功能。以下是一些典型的生态项目:
- Vulkan 教程: 使用 TinyObjLoader 加载模型数据,结合 Vulkan API 进行渲染。
- Metal 渲染器: 使用 TinyObjLoader 加载 OBJ 文件,结合 Metal API 进行渲染。
- CUDA 体素化引擎: 使用 TinyObjLoader 处理 3D 模型数据,结合 CUDA 进行体素化处理。
- 全局光照渲染器: 使用 TinyObjLoader 作为嵌入式 OBJ 加载器,结合全局光照算法进行渲染。
通过这些生态项目的结合,TinyObjLoader 可以发挥更大的作用,帮助开发者快速实现复杂的功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178