CMSSW_15_1_0_pre2版本发布:CMS软件框架的重要更新
项目简介
CMSSW(CMS软件框架)是欧洲核子研究中心(CERN)大型强子对撞机(LHC)上紧凑型μ子螺线管(CMS)实验的核心软件系统。作为高能物理实验数据分析的基础平台,CMSSW负责从原始探测器数据到最终物理分析的全流程处理。本次发布的CMSSW_15_1_0_pre2版本是该系列的一个重要预发布版本,包含了大量功能增强、错误修复和性能优化。
主要更新内容
几何描述与探测器模拟改进
本次更新对多个探测器的几何描述进行了重要修正,特别是针对HGCal(高粒度量热计)的V19版本几何描述进行了多项调整。开发团队修正了闪烁体盒的几何描述问题,移除了EE部分的重叠区域,并调整了混合层算法。这些改进确保了探测器模拟的准确性,为后续数据分析提供了可靠基础。
在MTD(精确时间探测器)方面,团队修复了ETL(端盖时间层)v10版本的拓扑参数读取问题,并更新了ETL几何描述以匹配最新工程设计图纸。这些改动解决了先前版本中存在的几何导航问题。
触发系统与数据采集优化
触发系统作为实验数据采集的第一道关卡,本次更新包含了多项重要改进。HLT(高级触发)菜单开发持续推进,团队修复了Diphoton XGBoost MVA过滤器中光子η参数交换的问题,并优化了触发路径配置。
数据采集系统(DAQ)方面,开发团队修复了多个关键问题,包括原始文件生成错误、输入源原始文件删除死锁问题,以及DAQSource中的同步问题。这些改进显著提高了数据采集系统的稳定性和可靠性。
重建算法与轨迹系统增强
重建算法方面,本次更新引入了多项优化。团队恢复了分支less 'and'操作,提高了重建效率;修正了SiStripClusterizer(FromRaw)中的问题;增加了对四个对象组合的支持;并改进了TICL(轨迹与量热计信息组合)能量回归和PID模型加载。
轨迹系统方面,开发人员为LST(大型硅轨迹器)添加了DNN(深度神经网络)来排除异常T3对象,并修复了集合重置问题。这些改进显著提高了轨迹系统的性能和准确性。
数据管理与分析工具升级
在数据管理方面,团队为CondDBESSource添加了transactionId作为可选参数,并提供了fillDescriptions方法。这些改进增强了条件数据库的灵活性和可用性。
分析工具方面,更新包括对NANO和MINIAOD格式的多项改进,如添加缺失的触发器过滤位、修正MET不确定性计算中的TauID选择、添加AK8子jet pT回归节点等。这些改进为物理分析提供了更丰富、更准确的数据。
性能优化与代码质量提升
本次更新包含了大量性能优化措施。团队移除了HCAL解包和局部重建的传统CUDA模块,优化了内存管理,并允许在RelVal工作流中使用RNTuple格式。这些改动显著提高了软件运行效率。
代码质量方面,开发团队修复了多个静态分析器警告,解决了数组边界问题和未初始化变量警告,并优化了多处代码逻辑。这些改进提高了软件的稳定性和可维护性。
技术亮点
-
新型探测器几何支持:对HGCal V19和ETL v10等新型探测器几何的全面支持,为未来实验数据采集做好准备。
-
机器学习集成:在多个子系统中集成了机器学习技术,如TICL中的PFN(粒子流网络)模型和LST中的DNN应用,展示了CMS实验在人工智能应用方面的前沿探索。
-
并行计算优化:通过移除传统CUDA模块和优化内存管理,显著提高了在高性能计算环境下的运行效率。
-
数据格式创新:支持RNTuple等新型数据格式,为处理未来更高亮度实验数据奠定基础。
总结
CMSSW_15_1_0_pre2版本作为CMS软件框架的重要更新,在探测器模拟、触发系统、数据重建和分析工具等多个方面都带来了显著改进。这些更新不仅解决了已知问题,还引入了多项创新功能,为CMS实验未来的数据采集和分析工作提供了更强大、更可靠的技术支持。开发团队持续关注代码质量和性能优化,确保软件框架能够满足高能物理研究日益增长的需求。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









