FusionCache 2.1.0版本发布:集成输出缓存与EF二级缓存
项目简介
FusionCache是一个功能强大的.NET缓存库,它结合了内存缓存和分布式缓存的优势,提供了丰富的功能特性。该项目最突出的特点是支持多级缓存(L1+L2)、故障安全机制(Fail-Safe)、后台广播(Backplane)以及标签支持(Tagging)等功能,使其成为构建高性能、高可用性应用程序的理想选择。
2.1.0版本核心更新
1. 输出缓存集成
在ASP.NET Core中,输出缓存(Output Cache)是一个重要的性能优化手段。传统实现依赖于简单的内存缓存,而FusionCache 2.1.0版本通过实现IOutputCacheStore接口,为输出缓存带来了FusionCache的全部能力。
集成优势:
- 保留内存缓存(L1)的高性能
- 增加分布式缓存(L2)的持久性和高可用性
- 通过Backplane实现即时缓存同步
- 支持故障安全机制,确保系统稳定性
配置示例:
// 基础配置
services.AddFusionCache();
services.AddFusionOutputCache();
services.AddOutputCache(options => {
options.AddPolicy("Expire2", builder => builder.Expire(TimeSpan.FromSeconds(2)));
});
// 高级配置(使用命名缓存和二进制序列化)
services.AddFusionCache("OutputCache")
.WithSerializer(new FusionCacheProtoBufNetSerializer())
.WithDistributedCache(new RedisCache(...))
.WithBackplane(new RedisBackplane(...));
services.AddFusionOutputCache(options => {
options.CacheName = "OutputCache";
});
序列化建议: 对于输出缓存这种处理二进制数据(HTTP响应)的场景,推荐使用原生二进制序列化器如protobuf-net、MessagePack或MemoryPack,而非JSON等文本序列化器,以获得最佳性能和最小存储开销。
2. Entity Framework二级缓存支持
FusionCache 2.1.0版本与EFCoreSecondLevelCacheInterceptor项目实现了无缝集成,为Entity Framework Core提供了透明的二级缓存解决方案。
技术特点:
- 自动缓存查询结果
- 支持缓存失效策略
- 与FusionCache的多级缓存架构深度整合
- 建议使用v5.1及以上版本以获得最佳兼容性
3. 后台广播改进
FusionCache的Backplane功能在此版本中得到了全面异步化增强:
- 初始订阅过程完全异步化
- 取消订阅过程完全异步化
- 消息收发保持原有的异步特性
这些改进使得在高并发场景下的缓存同步更加可靠和高效。
4. 问题修复与优化
并行初始化问题修复: 修复了在高度并行初始化场景下可能出现的模型注册遗漏问题,确保了protobuf-net序列化器的稳定工作。
日志系统改进: 统一了各级缓存操作的日志级别,使调试信息更加一致和完整。现在L1和L2缓存操作都使用相同的日志级别,便于问题排查。
5. 新增系统流程图解
为了帮助开发者更好地理解FusionCache的内部工作机制,2.1.0版本新增了详细的系统流程图解,包括:
- 基础缓存操作流程
- 多级缓存交互示意图
- 故障安全机制工作流程
- 后台广播消息传递机制
这些图解对于理解复杂场景下的缓存行为非常有帮助。
升级建议
对于正在使用v2.0.0版本的用户,2.1.0版本提供了平滑的升级路径。新功能如输出缓存集成和EF二级缓存支持都可以按需采用,不会影响现有功能。
对于仍在使用v1.x版本的用户,建议先参考v2.0.0的迁移指南,了解标签系统等重大变更,然后再升级到最新版本。
总结
FusionCache 2.1.0版本通过深度集成ASP.NET Core输出缓存和Entity Framework二级缓存,进一步巩固了其作为.NET生态系统中功能最全面的缓存解决方案的地位。同时,在稳定性、可观测性和文档方面也做出了显著改进,使得开发者能够更轻松地构建高性能、高可用的应用程序。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00