OpenBMB/OmniLMM项目中的显存优化问题分析与解决方案
2025-05-11 16:38:33作者:牧宁李
在部署OpenBMB/OmniLMM这类大型语言模型时,显存不足是开发者经常遇到的问题。本文将以一个典型场景为例,深入分析3090显卡上运行vllm推理时出现的显存不足问题,并提供可行的解决方案。
问题现象
当用户在NVIDIA 3090显卡(24GB显存)上运行vllm 2.6版本进行推理时,即使设置了gpu_memory_utilization=0.9(即预留90%显存),系统仍然报告显存不足。错误信息显示,系统尝试分配2GB显存失败,而此时显卡上仅有979MB空闲显存。
原因分析
-
显存分配机制:vllm的显存管理采用预分配策略,gpu_memory_utilization参数控制预分配比例,但实际运行时仍可能有额外显存需求。
-
模型规模因素:OmniLMM作为大型多模态模型,其推理过程不仅需要加载模型参数,还需要处理中间计算结果,显存需求会随输入长度增加而增长。
-
3090显卡特性:虽然3090拥有24GB显存,但实际可用显存会因系统开销而略有减少。
解决方案
-
调整显存利用率参数:将gpu_memory_utilization从0.9降至0.8,为系统运行留出更多缓冲空间。
-
优化模型配置:
- 使用half精度(dtype='half')减少显存占用
- 合理设置max_model_len参数,控制最大输入长度
-
系统级优化:
- 设置环境变量PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True,避免显存碎片化
- 关闭不必要的后台进程,释放显存资源
实践建议
对于24GB显存的3090显卡,建议采取以下配置组合:
model = LLM(
model=model_path,
trust_remote_code=True,
gpu_memory_utilization=0.8, # 调整为更保守的值
dtype='half',
max_model_len=2048
)
同时监控显存使用情况,根据实际负载动态调整参数。如果仍遇到显存不足问题,可考虑进一步降低max_model_len或使用量化版本模型。
通过合理配置和优化,可以在有限显存条件下实现大型语言模型的高效推理。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882