探索高效与表达力的完美结合:Agent Attention 模块
项目介绍
Agent Attention 是一项创新的注意力机制,旨在解决Transformer模型中Softmax注意力机制的计算效率问题。这个项目提供了一个官方PyTorch实现和预训练模型,让你能够轻松地在自己的深度学习任务中尝试这一新技术。其核心思想是引入“代理”(agent)令牌,以一种更加高效的方式聚合全局信息并传递给查询(query)令牌。
项目技术分析
不同于传统的Softmax注意力,Agent Attention在四元组中引入了代理令牌。这些代理令牌首先为查询令牌收集信息,然后将信息回传给,从而大大减少了计算量。有趣的是,该方法被证明是线性注意力的一种广义形式,因此它巧妙地融合了Softmax的强大功能和线性的高效性。
项目文档中详细展示了Agent Attention的工作原理,以及如何构建Agent Attention模块。通过池化操作获取代理令牌,再利用这些令牌从值(value)矩阵中聚合信息,最后由查询令牌从中提取特征。此外,还添加了代理偏置和DWC(动态通道卷积)来增强位置信息和保持特征多样性。
项目及技术应用场景
Agent Attention已被成功应用于图像分类、语义分割和目标检测等下游任务。实验结果显示,在ImageNet-1K上的分类任务中,Agent Attention在保持高性能的同时显著提高了运行速度。在高分辨率设置下,模型依然能保持良好的性能。在下游任务如目标检测和语义分割上也表现出色,表明这种新方法具有广泛的适用性。
此外,研究者还将Agent Attention应用到稳定扩散(Stable Diffusion)模型中,无需额外训练,即可加速图像生成并提高质量。
项目特点
- 高效性:通过代理令牌,Agent Attention实现了对软最大注意力的高效替代,降低了计算成本。
- 灵活性:可无缝集成到现有Transformer架构中,适用于多种计算机视觉任务。
- 强大性能:在多个基准测试中,Agent Attention模型在保持高准确率的同时,提供了更快的速度和更优的资源利用率。
- 广泛适用性:不仅适用于图像分类,还可用于语义分割、目标检测和稳定扩散等任务。
如果你想在你的项目中提升模型效率,或者对Transformer的注意力机制有深入研究的兴趣,那么Agent Attention绝对值得你一试。记得在使用时给予作者应有的引用哦!
@article{han2023agent,
title={Agent Attention: On the Integration of Softmax and Linear Attention},
author={Han, Dongchen and Ye, Tianzhu and Han, Yizeng and Xia, Zhuofan and Song, Shiji and Huang, Gao},
journal={arXiv preprint arXiv:2312.08874},
year={2023}
}
如果你有任何问题或建议,欢迎直接联系项目作者Dongchen Han和Tianzhu Ye,他们很乐意提供帮助。现在就加入探索Agent Attention的世界,释放你的模型潜能吧!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00