探索高效与表达力的完美结合:Agent Attention 模块
项目介绍
Agent Attention 是一项创新的注意力机制,旨在解决Transformer模型中Softmax注意力机制的计算效率问题。这个项目提供了一个官方PyTorch实现和预训练模型,让你能够轻松地在自己的深度学习任务中尝试这一新技术。其核心思想是引入“代理”(agent)令牌,以一种更加高效的方式聚合全局信息并传递给查询(query)令牌。
项目技术分析
不同于传统的Softmax注意力,Agent Attention在四元组中引入了代理令牌。这些代理令牌首先为查询令牌收集信息,然后将信息回传给,从而大大减少了计算量。有趣的是,该方法被证明是线性注意力的一种广义形式,因此它巧妙地融合了Softmax的强大功能和线性的高效性。
项目文档中详细展示了Agent Attention的工作原理,以及如何构建Agent Attention模块。通过池化操作获取代理令牌,再利用这些令牌从值(value)矩阵中聚合信息,最后由查询令牌从中提取特征。此外,还添加了代理偏置和DWC(动态通道卷积)来增强位置信息和保持特征多样性。
项目及技术应用场景
Agent Attention已被成功应用于图像分类、语义分割和目标检测等下游任务。实验结果显示,在ImageNet-1K上的分类任务中,Agent Attention在保持高性能的同时显著提高了运行速度。在高分辨率设置下,模型依然能保持良好的性能。在下游任务如目标检测和语义分割上也表现出色,表明这种新方法具有广泛的适用性。
此外,研究者还将Agent Attention应用到稳定扩散(Stable Diffusion)模型中,无需额外训练,即可加速图像生成并提高质量。
项目特点
- 高效性:通过代理令牌,Agent Attention实现了对软最大注意力的高效替代,降低了计算成本。
- 灵活性:可无缝集成到现有Transformer架构中,适用于多种计算机视觉任务。
- 强大性能:在多个基准测试中,Agent Attention模型在保持高准确率的同时,提供了更快的速度和更优的资源利用率。
- 广泛适用性:不仅适用于图像分类,还可用于语义分割、目标检测和稳定扩散等任务。
如果你想在你的项目中提升模型效率,或者对Transformer的注意力机制有深入研究的兴趣,那么Agent Attention绝对值得你一试。记得在使用时给予作者应有的引用哦!
@article{han2023agent,
title={Agent Attention: On the Integration of Softmax and Linear Attention},
author={Han, Dongchen and Ye, Tianzhu and Han, Yizeng and Xia, Zhuofan and Song, Shiji and Huang, Gao},
journal={arXiv preprint arXiv:2312.08874},
year={2023}
}
如果你有任何问题或建议,欢迎直接联系项目作者Dongchen Han和Tianzhu Ye,他们很乐意提供帮助。现在就加入探索Agent Attention的世界,释放你的模型潜能吧!
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09