Terraform Provider for AzureRM:解决Marketplace镜像部署VM时的Plan报错问题
问题背景
在使用Terraform Provider for AzureRM部署基于Azure Marketplace镜像的虚拟机时,开发者可能会遇到一个常见错误:"Creating a virtual machine from Marketplace image requires Plan information in the request"。这个错误表明Azure平台要求为Marketplace镜像提供额外的Plan信息,但开发者已经按照文档配置了plan块却仍然报错。
问题分析
从错误日志可以看出,系统明确提示需要为Marketplace镜像提供Plan信息。Plan是Azure Marketplace中第三方镜像的授权协议,包含三个关键元素:publisher(发布者)、product(产品名称)和name(SKU名称)。当使用这些镜像创建VM时,必须接受相关条款并指定正确的Plan信息。
在提供的配置中,开发者已经为rocky-8-lvm镜像配置了plan块,但系统仍然报错。经过仔细检查,发现配置中存在几个潜在问题:
- 资源定义逻辑存在问题:同时创建了两个VM资源(vm_rocky和vm),但条件判断不够严谨
- 变量传递可能存在问题:os_distribution变量的值可能被错误解析
- 镜像信息可能不完整:plan块中的信息需要与source_image_reference完全匹配
解决方案
1. 确保Plan信息完整准确
Plan块必须包含三个必要字段,且必须与source_image_reference中的对应字段完全一致:
plan {
publisher = "resf" # 必须与source_image_reference中的publisher一致
product = "rockylinux-x86_64" # 必须与source_image_reference中的offer一致
name = "8-lvm" # 必须与source_image_reference中的sku一致
}
2. 简化资源定义逻辑
原配置中使用了两个独立的VM资源定义(vm_rocky和vm),并通过条件判断选择使用哪个。这种设计容易导致逻辑混乱,建议简化为单一资源定义:
resource "azurerm_linux_virtual_machine" "vm" {
# 公共配置...
dynamic "plan" {
for_each = contains(["rocky-8-lvm", "rocky-9-lvm"], var.os_distribution) ? [1] : []
content {
publisher = local.image_map[var.os_distribution].image_publisher
product = local.image_map[var.os_distribution].image_offer
name = local.image_map[var.os_distribution].image_sku
}
}
source_image_reference {
publisher = local.image_map[var.os_distribution].image_publisher
offer = local.image_map[var.os_distribution].image_offer
sku = local.image_map[var.os_distribution].image_sku
version = var.image_version
}
}
3. 验证Marketplace协议
即使正确配置了Plan信息,还需要确保订阅已接受相关Marketplace镜像的使用条款。可以通过Azure CLI验证:
az vm image terms show --publisher resf --offer rockylinux-x86_64 --plan 8-lvm
如果尚未接受条款,需要使用以下命令接受:
az vm image terms accept --publisher resf --offer rockylinux-x86_64 --plan 8-lvm
最佳实践建议
- 统一资源定义:避免使用多个相似的资源定义,改用dynamic块处理不同情况
- 完善变量验证:为os_distribution变量添加验证,确保只传递有效值
- 模块化设计:将VM创建逻辑封装为模块,提高复用性
- 状态管理:定期执行terraform plan检测配置漂移
- 错误处理:为关键资源配置合理的timeout设置
总结
在使用Terraform部署Azure Marketplace镜像时,正确处理Plan信息是关键。开发者需要确保:
- Plan块信息完整且与镜像引用一致
- 已接受相关Marketplace条款
- 资源定义逻辑清晰简洁
- 配置验证机制完善
通过以上措施,可以有效避免"Plan information required"错误,确保虚拟机部署流程顺利完成。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00