Burn项目在no_std环境下训练模型的探索与实践
2025-05-22 22:53:22作者:何将鹤
在嵌入式系统和安全计算领域,no_std环境下的机器学习模型训练一直是一个具有挑战性的课题。本文将深入探讨如何在Burn项目中实现no_std环境下的模型训练,特别是针对ARM TrustZone等安全执行环境的适配方案。
no_std环境下的机器学习挑战
传统机器学习框架通常依赖于标准库(std)提供的丰富功能,包括内存分配、集合类型和浮点运算支持等。然而在嵌入式系统或安全执行环境(如ARM TrustZone)中,标准库往往不可用,开发者必须面对以下挑战:
- 内存管理需要手动处理
- 基本数据结构的缺失
- 浮点运算支持的限制
- 并行计算和硬件加速的兼容性问题
Burn项目的适配方案
针对no_std环境,Burn项目提出了三个关键的技术改造点:
核心库的no_std适配
将optim模块从依赖std转向使用core和alloc基础库。这一改造涉及:
- 替换所有std::前缀的导入为core::或alloc::
- 重新设计依赖于标准库的API接口
- 确保基础数学运算在no_std环境下的可用性
自动微分系统的改造
burn-autodiff作为计算图的核心,需要进行以下调整:
- 实现基于core的浮点特性支持
- 替换标准库中的集合类型
- 确保反向传播算法在受限环境中的稳定性
内存管理策略
在no_std环境下,采用以下策略:
- 使用hashbrown替代标准库的HashMap和HashSet
- 显式内存分配管理
- 静态内存预分配选项支持
技术实现细节
浮点运算支持
通过引入num_traits::float::Float特性,确保在no_std环境下仍能保持完整的浮点运算能力。这一特性提供了:
- 基本数学运算的trait抽象
- 特殊值(如NaN、Infinity)处理
- 类型转换支持
数据结构替代方案
hashbrown库作为标准库HashMap的高效替代,提供了:
- 与标准库相近的API接口
- 优秀的性能表现
- no_std环境下的完整功能支持
训练流程优化
针对受限环境,训练流程需要特殊考虑:
- 小批量训练策略
- 内存使用监控
- 检查点保存机制优化
实际应用场景
这一改造使得Burn能够在以下场景中发挥作用:
- ARM TrustZone安全环境下的隐私保护计算
- 嵌入式设备的在线学习
- 安全敏感场景的模型微调
- 资源受限环境的持续学习
未来发展方向
虽然当前改造已经解决了基础问题,但仍有许多优化空间:
- 更精细的内存管理策略
- 针对特定硬件的优化
- 训练过程的实时性保证
- 安全计算原语的深度集成
通过这一系列改造,Burn项目为no_std环境下的机器学习训练提供了可靠解决方案,扩展了深度学习在嵌入式系统和安全计算领域的应用边界。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
235
267
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33