POT项目中的3D张量EMD并行计算优化方案
2025-06-30 15:30:35作者:侯霆垣
概述
在POT(Python Optimal Transport)项目中,处理3D张量之间的Earth Mover's Distance(EMD)计算是一个常见的需求。本文将详细介绍如何优化这一计算过程,特别是如何利用并行计算技术来加速大规模3D张量的EMD矩阵计算。
EMD计算基础
EMD(地球移动距离)是衡量两个概率分布之间差异的重要指标。在POT库中,ot.emd()函数是计算EMD的核心函数,它接受两个一维分布和一个成本矩阵作为输入,返回最优传输方案。
3D张量的EMD计算挑战
当我们需要计算多个3D张量之间的EMD时,直接使用循环逐个计算会导致性能瓶颈。特别是当数据规模较大时(如k=1000,n=100),这种计算方式会变得非常耗时。
并行计算解决方案
POT项目提供了几种优化3D张量EMD计算的方案:
1. 基础循环方法
这是最直接的方法,通过for循环逐个计算每个2D切片的EMD:
R_loop = np.zeros((k, n, n))
for i in range(k):
R_loop[i] = ot.emd(a, a, M[i])
这种方法简单直观,但无法利用多核CPU的并行计算能力。
2. Numpy向量化方法
通过numpy的take和stack函数,可以实现更高效的批量处理:
def apply_across_axis(func, M, axis=0):
return np.stack([
func(M.take(i, axis))
for i in range(M.shape[axis])
], axis=axis)
R_numpy = apply_across_axis(emd, M, 0)
这种方法比纯循环更高效,但仍然是在单线程中顺序执行。
3. Joblib并行计算方法
利用Joblib库可以实现真正的并行计算,充分利用多核CPU:
from joblib import Parallel, delayed
def apply_across_axis_joblib(func, M, axis=0, n_jobs=4):
res = Parallel(n_jobs=n_jobs, max_nbytes=None)(
delayed(func)(M.take(i, axis))
for i in range(M.shape[axis])
)
return np.stack(res, axis=axis)
R_joblib = apply_across_axis_joblib(emd, M, 0)
这种方法通过将计算任务分配到多个CPU核心上,可以显著提高大规模EMD计算的效率。
性能比较
在实际测试中,三种方法的性能差异明显:
- 基础循环方法:适合小规模数据,实现简单但效率最低
- Numpy向量化方法:中等规模数据,有一定优化但不支持并行
- Joblib并行方法:大规模数据,性能最佳,可充分利用多核CPU
实际应用建议
对于3D张量的EMD计算,建议:
- 小规模数据(如k<100):使用基础循环方法即可
- 中等规模数据(100<k<1000):考虑Numpy向量化方法
- 大规模数据(k>1000):必须使用Joblib并行方法
注意事项
- 并行计算会增加内存消耗,需要根据实际硬件配置调整n_jobs参数
- 对于PyTorch张量,需要先转换为numpy数组再计算
- 不同形状的张量可能需要调整axis参数
结论
通过合理选择并行计算方法,可以显著提高POT项目中3D张量EMD计算的效率。Joblib提供的并行计算能力特别适合处理大规模最优传输问题,为复杂的数据分析和机器学习任务提供了性能保障。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134