POT项目中的3D张量EMD并行计算优化方案
2025-06-30 01:24:49作者:侯霆垣
概述
在POT(Python Optimal Transport)项目中,处理3D张量之间的Earth Mover's Distance(EMD)计算是一个常见的需求。本文将详细介绍如何优化这一计算过程,特别是如何利用并行计算技术来加速大规模3D张量的EMD矩阵计算。
EMD计算基础
EMD(地球移动距离)是衡量两个概率分布之间差异的重要指标。在POT库中,ot.emd()函数是计算EMD的核心函数,它接受两个一维分布和一个成本矩阵作为输入,返回最优传输方案。
3D张量的EMD计算挑战
当我们需要计算多个3D张量之间的EMD时,直接使用循环逐个计算会导致性能瓶颈。特别是当数据规模较大时(如k=1000,n=100),这种计算方式会变得非常耗时。
并行计算解决方案
POT项目提供了几种优化3D张量EMD计算的方案:
1. 基础循环方法
这是最直接的方法,通过for循环逐个计算每个2D切片的EMD:
R_loop = np.zeros((k, n, n))
for i in range(k):
R_loop[i] = ot.emd(a, a, M[i])
这种方法简单直观,但无法利用多核CPU的并行计算能力。
2. Numpy向量化方法
通过numpy的take和stack函数,可以实现更高效的批量处理:
def apply_across_axis(func, M, axis=0):
return np.stack([
func(M.take(i, axis))
for i in range(M.shape[axis])
], axis=axis)
R_numpy = apply_across_axis(emd, M, 0)
这种方法比纯循环更高效,但仍然是在单线程中顺序执行。
3. Joblib并行计算方法
利用Joblib库可以实现真正的并行计算,充分利用多核CPU:
from joblib import Parallel, delayed
def apply_across_axis_joblib(func, M, axis=0, n_jobs=4):
res = Parallel(n_jobs=n_jobs, max_nbytes=None)(
delayed(func)(M.take(i, axis))
for i in range(M.shape[axis])
)
return np.stack(res, axis=axis)
R_joblib = apply_across_axis_joblib(emd, M, 0)
这种方法通过将计算任务分配到多个CPU核心上,可以显著提高大规模EMD计算的效率。
性能比较
在实际测试中,三种方法的性能差异明显:
- 基础循环方法:适合小规模数据,实现简单但效率最低
- Numpy向量化方法:中等规模数据,有一定优化但不支持并行
- Joblib并行方法:大规模数据,性能最佳,可充分利用多核CPU
实际应用建议
对于3D张量的EMD计算,建议:
- 小规模数据(如k<100):使用基础循环方法即可
- 中等规模数据(100<k<1000):考虑Numpy向量化方法
- 大规模数据(k>1000):必须使用Joblib并行方法
注意事项
- 并行计算会增加内存消耗,需要根据实际硬件配置调整n_jobs参数
- 对于PyTorch张量,需要先转换为numpy数组再计算
- 不同形状的张量可能需要调整axis参数
结论
通过合理选择并行计算方法,可以显著提高POT项目中3D张量EMD计算的效率。Joblib提供的并行计算能力特别适合处理大规模最优传输问题,为复杂的数据分析和机器学习任务提供了性能保障。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210