SciSharp-Stack-Examples 项目教程
1. 项目介绍
SciSharp-Stack-Examples 是一个包含了许多实用示例的仓库,这些示例使用 SciSharp 的机器学习库编写。SciSharp 是一个致力于将 Python 的机器学习生态系统(如 TensorFlow、Keras 等)移植到 .NET 平台的开源项目。通过这些示例,开发者可以快速上手使用 .NET 进行深度学习。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- .NET Core 5.0
- Visual Studio 2019 或 Visual Studio Code
2.2 克隆项目
首先,克隆 SciSharp-Stack-Examples 仓库到本地:
git clone https://github.com/SciSharp/SciSharp-Stack-Examples.git
2.3 运行示例
进入项目目录并运行特定示例:
cd SciSharp-Stack-Examples/src/TensorFlowNET.Examples
dotnet run --project TensorFlowNET.Examples.csproj -ex "Linear Regression (Graph)"
3. 应用案例和最佳实践
3.1 手写数字识别
在 src/TensorFlowNET.Examples/ImageProcessing 目录下,你可以找到 DigitRecognitionCNN.cs 文件,这是一个使用卷积神经网络(CNN)进行手写数字识别的示例。
3.2 线性回归
在 src/TensorFlowNET.Examples/BasicModels 目录下,LinearRegression.cs 文件展示了如何使用 TensorFlow.NET 进行线性回归。
3.3 图像分类
在 src/TensorFlowNET.Examples/ImageProcessing 目录下,ImageClassification.cs 文件展示了如何使用 Keras 进行图像分类。
4. 典型生态项目
4.1 TensorFlow.NET
TensorFlow.NET 是 SciSharp 生态系统中的核心项目之一,它提供了对 TensorFlow 的 .NET 绑定,使得开发者可以在 .NET 环境中使用 TensorFlow。
4.2 Keras.NET
Keras.NET 是 SciSharp 生态系统中的另一个重要项目,它提供了对 Keras 的 .NET 绑定,使得开发者可以在 .NET 环境中使用 Keras 进行深度学习模型的构建和训练。
4.3 NumSharp
NumSharp 是 SciSharp 生态系统中的一个数值计算库,它提供了类似于 NumPy 的功能,使得开发者可以在 .NET 环境中进行高效的数值计算。
通过这些生态项目,SciSharp 为 .NET 开发者提供了一个完整的机器学习工具链,使得开发者可以在 .NET 平台上进行高效的机器学习和深度学习开发。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00