TweebankNLP:一揽子Twitter NLP解决方案
2024-09-26 07:13:44作者:冯爽妲Honey
项目介绍
TweebankNLP 是由MIT中心和媒体实验室共同开发的一个开源项目,旨在提供针对推文处理的现成自然语言处理工具包。该工具包在LREC 2022上发布,支持命名实体识别(NER)、分词(tokenization)、词干化(lemmatization)、词性标注(POS tagging)以及依存句法分析等任务。核心特性包括基于Tweebank V2训练的预训练模型,以及一个名为Twitter-Stanza的管道,这些模型在处理社交媒体文本时表现出色。
项目快速启动
安装
首先,确保你的系统已安装Python环境。接下来,通过pip从源安装TweebankNLP相关依赖:
pip install -e git+https://github.com/mit-ccc/TweebankNLP.git#egg=tweebanknlp
pip install pythainlp
下载必要的预训练模型和资源:
cd tweebanknlp
./download_twitter_resources.sh
使用Twitter-Stanza Pipeline示例
初始化配置,以使用仅基于Tweebank训练的模型:
import stanza
config = {
'processors': 'tokenize lemma pos depparse ner',
'lang': 'en',
'tokenize_pretokenized': True,
'tokenize_model_path': './saved_models/tokenize/en_tweet_tokenizer.pt',
'lemma_model_path': './saved_models/lemma/en_tweet_lemmatizer.pt',
'pos_model_path': './saved_models/pos/en_tweet_tagger.pt',
'depparse_model_path': './saved_models/depparse/en_tweet_parser.pt',
'ner_model_path': './saved_models/ner/en_tweet_nertagger.pt'
}
stanza.download('en')
nlp = stanza.Pipeline(**config)
doc = nlp("Oh, I actually prefer Messi over Ronaldo, but we all seem to like Ronaldo more.")
print(doc)
应用案例和最佳实践
命名实体识别案例:
假设你希望对一条推文进行命名实体识别。你可以使用已经在Tweebank数据集上训练的模型。例如,对于具有特定领域标签的数据,可以参考以下流程:
# 加载预先训练好的NER模型(以Bertweet为例)
model_to_load = "TweebankNLP/bertweet-tb2_wnut17-ner"
from transformers import AutoModelForTokenClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_to_load)
model = AutoModelForTokenClassification.from_pretrained(model_to_load)
text = "Joining #AI Summit next week!"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
然后解析输出获取实体。
典型生态项目
TweebankNLP的生态不仅仅限于其本身的GitHub仓库。它还在Hugging Face Model Hub上提供了易于使用的模型,使得开发者能够迅速集成到他们的应用程序中。例如,模型如TweebankNLP/bertweet-tb2_ewt-pos-tagging
是专为Twitter数据设计的词性标注模型,达到了高精度,并且容易部署。
结合Hugging Face的实践
你可以通过以下方式直接利用Hugging Face中的模型:
from transformers import pipeline
nlp = pipeline("ner", model="TweebankNLP/bertweet-tb2_wnut17-ner", tokenizer="bert-base-multilingual-cased")
result = nlp("Ronaldo loves playing football!")
for res in result:
print(res)
在这个实践中,我们展示了如何结合Hugging Face的pipeline功能来轻松实现推文的命名实体识别。
以上即是对TweebankNLP项目的一个简要介绍及其快速上手指南,希望能够帮助您高效地使用这一强大的社交媒体NLP工具。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5