TweebankNLP:一揽子Twitter NLP解决方案
2024-09-26 10:05:14作者:冯爽妲Honey
项目介绍
TweebankNLP 是由MIT中心和媒体实验室共同开发的一个开源项目,旨在提供针对推文处理的现成自然语言处理工具包。该工具包在LREC 2022上发布,支持命名实体识别(NER)、分词(tokenization)、词干化(lemmatization)、词性标注(POS tagging)以及依存句法分析等任务。核心特性包括基于Tweebank V2训练的预训练模型,以及一个名为Twitter-Stanza的管道,这些模型在处理社交媒体文本时表现出色。
项目快速启动
安装
首先,确保你的系统已安装Python环境。接下来,通过pip从源安装TweebankNLP相关依赖:
pip install -e git+https://github.com/mit-ccc/TweebankNLP.git#egg=tweebanknlp
pip install pythainlp
下载必要的预训练模型和资源:
cd tweebanknlp
./download_twitter_resources.sh
使用Twitter-Stanza Pipeline示例
初始化配置,以使用仅基于Tweebank训练的模型:
import stanza
config = {
'processors': 'tokenize lemma pos depparse ner',
'lang': 'en',
'tokenize_pretokenized': True,
'tokenize_model_path': './saved_models/tokenize/en_tweet_tokenizer.pt',
'lemma_model_path': './saved_models/lemma/en_tweet_lemmatizer.pt',
'pos_model_path': './saved_models/pos/en_tweet_tagger.pt',
'depparse_model_path': './saved_models/depparse/en_tweet_parser.pt',
'ner_model_path': './saved_models/ner/en_tweet_nertagger.pt'
}
stanza.download('en')
nlp = stanza.Pipeline(**config)
doc = nlp("Oh, I actually prefer Messi over Ronaldo, but we all seem to like Ronaldo more.")
print(doc)
应用案例和最佳实践
命名实体识别案例:
假设你希望对一条推文进行命名实体识别。你可以使用已经在Tweebank数据集上训练的模型。例如,对于具有特定领域标签的数据,可以参考以下流程:
# 加载预先训练好的NER模型(以Bertweet为例)
model_to_load = "TweebankNLP/bertweet-tb2_wnut17-ner"
from transformers import AutoModelForTokenClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_to_load)
model = AutoModelForTokenClassification.from_pretrained(model_to_load)
text = "Joining #AI Summit next week!"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
然后解析输出获取实体。
典型生态项目
TweebankNLP的生态不仅仅限于其本身的GitHub仓库。它还在Hugging Face Model Hub上提供了易于使用的模型,使得开发者能够迅速集成到他们的应用程序中。例如,模型如TweebankNLP/bertweet-tb2_ewt-pos-tagging是专为Twitter数据设计的词性标注模型,达到了高精度,并且容易部署。
结合Hugging Face的实践
你可以通过以下方式直接利用Hugging Face中的模型:
from transformers import pipeline
nlp = pipeline("ner", model="TweebankNLP/bertweet-tb2_wnut17-ner", tokenizer="bert-base-multilingual-cased")
result = nlp("Ronaldo loves playing football!")
for res in result:
print(res)
在这个实践中,我们展示了如何结合Hugging Face的pipeline功能来轻松实现推文的命名实体识别。
以上即是对TweebankNLP项目的一个简要介绍及其快速上手指南,希望能够帮助您高效地使用这一强大的社交媒体NLP工具。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19