自监督视觉驱动的3D占用预测:SelfOcc安装与使用指南
2024-09-27 14:17:44作者:胡易黎Nicole
项目概述
SelfOcc 是一个针对自动驾驶领域提出的自监督学习框架,旨在无需额外标注的情况下,通过视频序列学习场景的3D占用情况。该项目在CVPR 2024上被接收,并提供了从模型训练到评估的完整代码实现。
1. 目录结构及介绍
SelfOcc的仓库遵循了一种组织良好的结构,便于开发者快速定位关键组件:
- assets: 包含项目中可能使用的静态资源或辅助文件。
- config: 配置文件所在目录,包含了各种实验设置,如模型参数、优化器选择等。
- dataset: 数据处理相关的脚本或说明,用于数据预处理和同步。
- docs: 文档资料,可能包括开发笔记或技术说明。
- loss: 定义损失函数的模块。
- model: 模型架构的定义,这里是SelfOcc的核心部分。
- utils: 辅助工具集,包括常见的数据处理、日志记录等功能。
- *.py: 运行脚本,如
train.py,eval_depth.py等,分别用于训练、评估等操作。 - LICENSE: 许可证文件,说明了项目的使用条款,基于Apache-2.0许可证。
2. 项目的启动文件介绍
主要运行脚本
- train.py: 用于模型训练的主脚本。通过指定配置文件(
--py-config)和工作目录(--work-dir)来开始训练过程。 - eval_[功能].py (例如
eval_iou.py,eval_depth.py): 提供模型评估功能,允许开发者检查模型性能。同样需要配置文件和工作目录路径以加载模型状态进行评估。
启动模型训练示例:
python train.py --py-config config/nuscenes/nuscenes_occ.py --work-dir out/nuscenes/occ_train --depth-metric
3. 项目的配置文件介绍
配置文件位于config目录下,是控制实验设置的关键。每个配置文件通常包括以下部分:
- 基础设置: 如实验名称、运行设备(GPU/CPU)等。
- 模型参数: 包括模型架构的选择、预训练模型路径等。
- 数据集设置: 指定数据路径、预处理选项和批次大小等。
- 训练参数: 学习率、优化器类型、训练轮次等。
- 评估指标: 如何计算性能指标,包括所关注的具体度量(如IoU、深度误差)。
一个典型的配置文件示例会详细列出上述所有方面,允许用户根据具体需求调整这些设置。修改配置文件以适应特定的实验需求是常见做法。
总结
SelfOcc项目通过其精心设计的目录结构和清晰的脚本分工,为开发者提供了一个易于理解和扩展的框架。开发者应首先阅读配置文件以了解每个实验的细节,随后利用提供的train.py和eval_[功能].py脚本来训练和评估模型。此指南仅为快速入门,深入研究时,请参考项目中的详细文档和注释以获得最佳实践建议。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
294
2.62 K
暂无简介
Dart
585
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.29 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
760
72
Ascend Extension for PyTorch
Python
124
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
424
仓颉编程语言运行时与标准库。
Cangjie
130
437