自监督视觉驱动的3D占用预测:SelfOcc安装与使用指南
2024-09-27 11:31:39作者:胡易黎Nicole
项目概述
SelfOcc 是一个针对自动驾驶领域提出的自监督学习框架,旨在无需额外标注的情况下,通过视频序列学习场景的3D占用情况。该项目在CVPR 2024上被接收,并提供了从模型训练到评估的完整代码实现。
1. 目录结构及介绍
SelfOcc的仓库遵循了一种组织良好的结构,便于开发者快速定位关键组件:
- assets: 包含项目中可能使用的静态资源或辅助文件。
- config: 配置文件所在目录,包含了各种实验设置,如模型参数、优化器选择等。
- dataset: 数据处理相关的脚本或说明,用于数据预处理和同步。
- docs: 文档资料,可能包括开发笔记或技术说明。
- loss: 定义损失函数的模块。
- model: 模型架构的定义,这里是SelfOcc的核心部分。
- utils: 辅助工具集,包括常见的数据处理、日志记录等功能。
- *.py: 运行脚本,如
train.py,eval_depth.py等,分别用于训练、评估等操作。 - LICENSE: 许可证文件,说明了项目的使用条款,基于Apache-2.0许可证。
2. 项目的启动文件介绍
主要运行脚本
- train.py: 用于模型训练的主脚本。通过指定配置文件(
--py-config)和工作目录(--work-dir)来开始训练过程。 - eval_[功能].py (例如
eval_iou.py,eval_depth.py): 提供模型评估功能,允许开发者检查模型性能。同样需要配置文件和工作目录路径以加载模型状态进行评估。
启动模型训练示例:
python train.py --py-config config/nuscenes/nuscenes_occ.py --work-dir out/nuscenes/occ_train --depth-metric
3. 项目的配置文件介绍
配置文件位于config目录下,是控制实验设置的关键。每个配置文件通常包括以下部分:
- 基础设置: 如实验名称、运行设备(GPU/CPU)等。
- 模型参数: 包括模型架构的选择、预训练模型路径等。
- 数据集设置: 指定数据路径、预处理选项和批次大小等。
- 训练参数: 学习率、优化器类型、训练轮次等。
- 评估指标: 如何计算性能指标,包括所关注的具体度量(如IoU、深度误差)。
一个典型的配置文件示例会详细列出上述所有方面,允许用户根据具体需求调整这些设置。修改配置文件以适应特定的实验需求是常见做法。
总结
SelfOcc项目通过其精心设计的目录结构和清晰的脚本分工,为开发者提供了一个易于理解和扩展的框架。开发者应首先阅读配置文件以了解每个实验的细节,随后利用提供的train.py和eval_[功能].py脚本来训练和评估模型。此指南仅为快速入门,深入研究时,请参考项目中的详细文档和注释以获得最佳实践建议。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C061
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
451
3.36 K
Ascend Extension for PyTorch
Python
254
287
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
832
407
暂无简介
Dart
705
167
React Native鸿蒙化仓库
JavaScript
279
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
162
59
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19