JRuby中ruby2_keywords与原生方法转发时的参数检查问题分析
问题背景
在JRuby项目中,当开发者使用ruby2_keywords特性与alias_method或alias结合时,参数处理会出现异常。这个问题主要出现在将参数转发到原生方法时,参数数量检查不正确的情况。
问题复现
通过一个简单的示例可以复现这个问题:
class File
class << self
alias original_write write
ruby2_keywords def write(*args, &block)
puts "traced #{__method__}"
original_write(*args, &block)
end
end
end
File.write('scratch', "stuff", 0, mode: 'a+')
在MRI Ruby 3.1.2上,这段代码能正常运行。但在JRuby 9.4.8.0上,会抛出ArgumentError: wrong number of arguments (given 4, expected 2..3)异常。
问题本质
这个问题实际上与alias无关,更根本的原因是当ruby2_keywords方法将参数转发到原生方法时,JRuby没有正确处理关键字参数的传递。核心问题在于:
- 原生方法没有正确处理标记为
ruby2_keywords的哈希参数 - 调用信息(callInfo)中的关键字参数标志位没有被正确设置
技术分析
在Ruby 2.x到3.x的过渡期间,ruby2_keywords是一个临时的兼容性特性,它允许将最后一个哈希参数作为关键字参数传递。在JRuby的实现中,当这样的参数被转发到原生方法时,系统没有正确识别和处理这个标记。
具体来说,当调用链如下时:
- 一个方法被标记为
ruby2_keywords - 该方法接收可变参数(
*args) - 这些参数被转发到一个原生方法
- 原生方法期望接收关键字参数
JRuby没有正确地将标记为ruby2_keywords的哈希转换为真正的关键字参数,而是将其作为普通参数传递,导致参数数量检查失败。
解决方案
JRuby团队决定采用针对性的修复方案,主要基于以下考虑:
ruby2_keywords是一个过渡性特性,不应该投入过多资源进行全面改造- 只需要修复实际影响用户的关键方法即可
- 更全面的改进可以留待JRuby 10的开发
具体修复方案包括:
- 在调用原生方法时,检查参数是否包含
ruby2_keywords标记的哈希 - 如果目标方法接受关键字参数,则设置适当的调用信息标志位
- 重置哈希的
ruby2_keywords标记状态
受影响的方法
根据用户反馈,主要修复了以下File类方法:
File.open(实际上是IO.open)File.readFile.write
而File.stat方法经确认并不需要修复,因为它本身不接受关键字参数。
总结
这个问题展示了Ruby 2.x到3.x过渡期间关键字参数处理的复杂性。JRuby团队采取了务实的方法,针对实际使用场景进行修复,而不是进行全面改造。这种平衡兼容性和开发资源的决策,对于维护一个稳定的Ruby实现至关重要。
对于开发者来说,理解ruby2_keywords的过渡性质很重要,长期来看应该逐步将代码迁移到Ruby 3.x的标准关键字参数语法,而不是依赖这个兼容层。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00