forcats 开源项目教程
2025-05-19 23:05:56作者:钟日瑜
1. 项目介绍
forcats 是一个R语言的开源包,属于tidyverse家族,专门用于处理分类变量(即因子)。在数据分析中,分类变量具有已知的固定取值集合。forcats 提供了一系列工具来处理因子的常见问题,包括改变因子的水平顺序或值。例如,你可以使用 fct_reorder() 根据另一个变量重新排序因子,或者使用 fct_infreq() 根据值的出现频率重新排序因子。
2. 项目快速启动
首先,确保你已经安装了R语言环境。然后,可以通过以下代码安装forcats包:
# 安装整个tidyverse包,包含forcats
install.packages("tidyverse")
# 或者,只安装forcats包
install.packages("forcats")
# 或者,从GitHub安装开发版本
# install.packages("pak")
# pak::pak("tidyverse/forcats")
安装后,可以在R环境中加载forcats:
library(forcats)
下面是一个简单示例,展示了如何使用forcats来处理数据框中的分类变量:
# 加载所需的库
library(forcats)
library(dplyr)
library(ggplot2)
# 假设有一个名为starwars的数据框
# 过滤掉species列中的缺失值
filtered_starwars <- starwars %>%
filter(!is.na(species))
# 根据物种数量对species因子进行排序
species_count <- filtered_starwars %>%
count(species, sort = TRUE)
# 将物种分类合并,除了前三个最常见的物种外,其余合并为"Other"
lumped_species <- filtered_starwars %>%
mutate(species = fct_lump(species, n = 3)) %>%
count(species)
# 输出结果
print(species_count)
print(lumped_species)
3. 应用案例和最佳实践
在处理分类数据时,常见的一个需求是根据另一个变量的值来重新排序因子。以下是一个应用案例:
# 假设我们有一个名为order_by_count的数据框,其中包含两个变量:species和count
# 我们想要根据count的值来重新排序species因子
order_by_count <- filtered_starwars %>%
count(species) %>%
arrange(desc(n))
# 使用fct_reorder()来根据count重新排序species
ordered_species <- filtered_starwars %>%
mutate(species = fct_reorder(species, count))
另一个最佳实践是,在可视化分类数据时,将不常见的类别合并为一个类别,这样可以简化图表:
# 使用fct_lump()将不常见的eye_color合并为"Other"
rare_eye_colors <- filtered_starwars %>%
mutate(eye_color = fct_lump(eye_color, n = 5)) %>%
ggplot(aes(x = eye_color)) +
geom_bar() +
coord_flip()
# 显示图表
print(rare_eye_colors)
4. 典型生态项目
forcats 作为 tidyverse 的一部分,通常与以下项目一起使用,以构成一个完整的数据分析生态:
dplyr: 用于数据操作的R包,提供了一组工具,用于更快、更直观地处理数据。ggplot2: 用于数据可视化的R包,基于Leland Wilkinson的图形语法(The Grammar of Graphics)。readr: 用于读取表格数据的R包,可以读取CSV、Excel和其他常见的数据格式。tidyr: 用于数据清理的R包,可以帮助你将数据整理成整洁的形式。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19