LibriMix:噪声环境中的开源语音源分离数据集
2024-09-25 01:09:58作者:谭伦延
项目介绍
LibriMix 是一个专为在嘈杂环境中进行源分离设计的开源数据集。它源于 LibriSpeech 的清晰音频子集,并结合了 WHAM 噪声样本,提供了一个免费的替代方案以补充现有的WHAM数据集。该数据集旨在支持更普遍适用的语音分离任务,允许研究者进行跨数据集实验。LibriMix 允许用户自定义混合音频的来源数量、采样率、混合模式(最小结束或最长结束)以及混合类型。
项目快速启动
要迅速开始使用 LibriMix 数据集,按照以下步骤操作:
-
克隆仓库:
git clone https://github.com/JorisCos/LibriMix -
进入项目目录并运行脚本: 确保你的系统已安装SoX工具,Windows上可以使用:
conda install -c groakat sox对于Linux系统,则执行:
conda install -c conda-forge sox之后,在LibriMix根目录下执行生成脚本:
./generate_librimix.sh storage_dir其中
storage_dir是你要存储数据集的路径。你可以手动修改脚本中的n_src(源数量)和存储位置,或者通过命令行参数调整。
应用案例和最佳实践
LibriMix被设计用于训练和测试深度学习模型的语音分离能力。一个推荐的实践是使用Asteroid框架,它提供了与LibriMix兼容的实现模板,确保了实验的可重复性。为了实现最佳效果,开发者应该探索不同的混合模式和采样率,调整模型架构来应对不同数量的说话者场景。
示例代码片段
虽然具体模型实现不在LibriMix项目内,但在Asteroid或其他类似的深度学习库中,你的训练流程可能会类似于下面的伪代码:
from asteroid.models import DPRNNTasNet
from asteroid.data import LibriMixDataset
# 初始化模型
model = DPRNNTasNet()
# 准备数据加载器
dataset = LibriMixDataset("path/to/LibriMix", "train-360")
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
# 训练循环
for epoch in range(num_epochs):
for mixed, sources in dataloader:
# 前向传播
est_sources = model(mixed)
# 损失计算与反向传播
loss = calculate_loss(est_sources, sources)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# 保存模型或评估模型性能
evaluate(model, "validation-set-path")
典型生态项目
- Asteroid: 这个项目高度推荐与LibriMix一起使用,它提供了多种端到端的信号处理和声音分离模型,以及与LibriMix配套的训练和评估脚本。
- SparseLibriMix: 针对更加真实的、类似对话场景的数据集,由LibriMix的贡献者发布,适用于那些希望研究更为复杂交互情况的研究者。
通过这些组件和实践,LibriMix不仅是一个数据集,而且是构建强大语音分离解决方案的强大基石。记得在使用此数据集时遵循适当的引用指南,贡献者包括Joris Cosentino, Manuel Pariente等人,并且请通过正确的途径引用其工作。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868