首页
/ LibriMix:噪声环境中的开源语音源分离数据集

LibriMix:噪声环境中的开源语音源分离数据集

2024-09-25 04:59:46作者:谭伦延

项目介绍

LibriMix 是一个专为在嘈杂环境中进行源分离设计的开源数据集。它源于 LibriSpeech 的清晰音频子集,并结合了 WHAM 噪声样本,提供了一个免费的替代方案以补充现有的WHAM数据集。该数据集旨在支持更普遍适用的语音分离任务,允许研究者进行跨数据集实验。LibriMix 允许用户自定义混合音频的来源数量、采样率、混合模式(最小结束或最长结束)以及混合类型。

项目快速启动

要迅速开始使用 LibriMix 数据集,按照以下步骤操作:

  1. 克隆仓库:

    git clone https://github.com/JorisCos/LibriMix
    
  2. 进入项目目录并运行脚本: 确保你的系统已安装SoX工具,Windows上可以使用:

    conda install -c groakat sox
    

    对于Linux系统,则执行:

    conda install -c conda-forge sox
    

    之后,在LibriMix根目录下执行生成脚本:

    ./generate_librimix.sh storage_dir
    

    其中storage_dir是你要存储数据集的路径。你可以手动修改脚本中的n_src(源数量)和存储位置,或者通过命令行参数调整。

应用案例和最佳实践

LibriMix被设计用于训练和测试深度学习模型的语音分离能力。一个推荐的实践是使用Asteroid框架,它提供了与LibriMix兼容的实现模板,确保了实验的可重复性。为了实现最佳效果,开发者应该探索不同的混合模式和采样率,调整模型架构来应对不同数量的说话者场景。

示例代码片段

虽然具体模型实现不在LibriMix项目内,但在Asteroid或其他类似的深度学习库中,你的训练流程可能会类似于下面的伪代码:

from asteroid.models import DPRNNTasNet
from asteroid.data import LibriMixDataset

# 初始化模型
model = DPRNNTasNet()

# 准备数据加载器
dataset = LibriMixDataset("path/to/LibriMix", "train-360")
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)

# 训练循环
for epoch in range(num_epochs):
    for mixed, sources in dataloader:
        # 前向传播
        est_sources = model(mixed)
        
        # 损失计算与反向传播
        loss = calculate_loss(est_sources, sources)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
    
    # 保存模型或评估模型性能
    evaluate(model, "validation-set-path")

典型生态项目

  • Asteroid: 这个项目高度推荐与LibriMix一起使用,它提供了多种端到端的信号处理和声音分离模型,以及与LibriMix配套的训练和评估脚本。
  • SparseLibriMix: 针对更加真实的、类似对话场景的数据集,由LibriMix的贡献者发布,适用于那些希望研究更为复杂交互情况的研究者。

通过这些组件和实践,LibriMix不仅是一个数据集,而且是构建强大语音分离解决方案的强大基石。记得在使用此数据集时遵循适当的引用指南,贡献者包括Joris Cosentino, Manuel Pariente等人,并且请通过正确的途径引用其工作。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
505
42
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
333
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70