LibriMix:噪声环境中的开源语音源分离数据集
2024-09-25 01:44:05作者:谭伦延
项目介绍
LibriMix 是一个专为在嘈杂环境中进行源分离设计的开源数据集。它源于 LibriSpeech 的清晰音频子集,并结合了 WHAM 噪声样本,提供了一个免费的替代方案以补充现有的WHAM数据集。该数据集旨在支持更普遍适用的语音分离任务,允许研究者进行跨数据集实验。LibriMix 允许用户自定义混合音频的来源数量、采样率、混合模式(最小结束或最长结束)以及混合类型。
项目快速启动
要迅速开始使用 LibriMix 数据集,按照以下步骤操作:
-
克隆仓库:
git clone https://github.com/JorisCos/LibriMix -
进入项目目录并运行脚本: 确保你的系统已安装SoX工具,Windows上可以使用:
conda install -c groakat sox对于Linux系统,则执行:
conda install -c conda-forge sox之后,在LibriMix根目录下执行生成脚本:
./generate_librimix.sh storage_dir其中
storage_dir是你要存储数据集的路径。你可以手动修改脚本中的n_src(源数量)和存储位置,或者通过命令行参数调整。
应用案例和最佳实践
LibriMix被设计用于训练和测试深度学习模型的语音分离能力。一个推荐的实践是使用Asteroid框架,它提供了与LibriMix兼容的实现模板,确保了实验的可重复性。为了实现最佳效果,开发者应该探索不同的混合模式和采样率,调整模型架构来应对不同数量的说话者场景。
示例代码片段
虽然具体模型实现不在LibriMix项目内,但在Asteroid或其他类似的深度学习库中,你的训练流程可能会类似于下面的伪代码:
from asteroid.models import DPRNNTasNet
from asteroid.data import LibriMixDataset
# 初始化模型
model = DPRNNTasNet()
# 准备数据加载器
dataset = LibriMixDataset("path/to/LibriMix", "train-360")
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
# 训练循环
for epoch in range(num_epochs):
for mixed, sources in dataloader:
# 前向传播
est_sources = model(mixed)
# 损失计算与反向传播
loss = calculate_loss(est_sources, sources)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# 保存模型或评估模型性能
evaluate(model, "validation-set-path")
典型生态项目
- Asteroid: 这个项目高度推荐与LibriMix一起使用,它提供了多种端到端的信号处理和声音分离模型,以及与LibriMix配套的训练和评估脚本。
- SparseLibriMix: 针对更加真实的、类似对话场景的数据集,由LibriMix的贡献者发布,适用于那些希望研究更为复杂交互情况的研究者。
通过这些组件和实践,LibriMix不仅是一个数据集,而且是构建强大语音分离解决方案的强大基石。记得在使用此数据集时遵循适当的引用指南,贡献者包括Joris Cosentino, Manuel Pariente等人,并且请通过正确的途径引用其工作。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210