Inspect AI 项目教程
1. 项目介绍
Inspect AI 是由英国 AI 安全研究所(UK AI Safety Institute)开发的一个用于大型语言模型评估的框架。该框架提供了许多内置组件,包括提示工程、工具使用、多轮对话和模型分级评估等功能。Inspect AI 旨在帮助开发者更有效地评估和优化大型语言模型的性能。
2. 项目快速启动
安装 Inspect AI
首先,您需要安装 Inspect AI。可以通过以下命令使用 pip 进行安装:
pip install inspect-ai
开发和运行评估
为了开发和运行评估,您需要访问一个模型。通常,这需要安装一个 Python 包,并确保在环境中设置了适当的 API 密钥。以下是一个示例,展示了如何为不同的模型提供商设置和运行评估:
示例:使用 OpenAI 模型
pip install openai
export OPENAI_API_KEY=your-openai-api-key
inspect eval arc.py --model openai/gpt-4
示例:使用 Anthropic 模型
pip install anthropic
export ANTHROPIC_API_KEY=your-anthropic-api-key
inspect eval arc.py --model anthropic/claude-3-opus-20240229
编写评估脚本
以下是一个简单的评估脚本示例,展示了如何使用 Inspect AI 进行评估:
from inspect_ai import Task, eval, task
from inspect_ai.dataset import example_dataset
from inspect_ai.scorer import model_graded_fact
from inspect_ai.solver import (
chain_of_thought,
generate,
self_critique
)
@task
def theory_of_mind():
return Task(
dataset=example_dataset("theory_of_mind"),
plan=[
chain_of_thought(),
generate(),
self_critique()
],
scorer=model_graded_fact()
)
运行评估
使用以下命令运行评估:
inspect eval theory_of_mind.py --model openai/gpt-4
3. 应用案例和最佳实践
案例:Sally-Anne 测试
Sally-Anne 测试用于评估一个人推断他人错误信念的能力。以下是一个使用 Inspect AI 进行 Sally-Anne 测试的示例:
from inspect_ai import Task, eval, task
from inspect_ai.dataset import example_dataset
from inspect_ai.scorer import model_graded_fact
from inspect_ai.solver import (
chain_of_thought,
generate,
self_critique
)
@task
def sally_anne_test():
return Task(
dataset=example_dataset("sally_anne"),
plan=[
chain_of_thought(),
generate(),
self_critique()
],
scorer=model_graded_fact()
)
最佳实践
- 自定义提示模板:根据具体的数据集和评估需求,自定义提示模板以提高评估的准确性。
- 多模型评估:使用 Inspect AI 同时评估多个模型,比较它们的性能。
- 日志分析:使用 Inspect AI 的日志查看器分析评估结果,调试和优化评估脚本。
4. 典型生态项目
1. OpenAI API
OpenAI API 是一个广泛使用的模型提供商,支持多种大型语言模型。Inspect AI 可以与 OpenAI API 无缝集成,进行模型评估和优化。
2. Anthropic API
Anthropic API 提供了 Claude 系列模型,适用于需要高度可靠性和安全性的应用场景。Inspect AI 可以用于评估这些模型的性能。
3. Hugging Face Transformers
Hugging Face Transformers 是一个流行的开源库,提供了多种预训练模型。Inspect AI 可以与 Hugging Face Transformers 集成,进行模型评估和优化。
4. Azure AI
Azure AI 提供了多种云端模型服务,Inspect AI 可以与 Azure AI 集成,进行模型评估和优化。
通过这些生态项目的集成,Inspect AI 可以帮助开发者更全面地评估和优化大型语言模型的性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00