Inspect AI 项目教程
1. 项目介绍
Inspect AI 是由英国 AI 安全研究所(UK AI Safety Institute)开发的一个用于大型语言模型评估的框架。该框架提供了许多内置组件,包括提示工程、工具使用、多轮对话和模型分级评估等功能。Inspect AI 旨在帮助开发者更有效地评估和优化大型语言模型的性能。
2. 项目快速启动
安装 Inspect AI
首先,您需要安装 Inspect AI。可以通过以下命令使用 pip 进行安装:
pip install inspect-ai
开发和运行评估
为了开发和运行评估,您需要访问一个模型。通常,这需要安装一个 Python 包,并确保在环境中设置了适当的 API 密钥。以下是一个示例,展示了如何为不同的模型提供商设置和运行评估:
示例:使用 OpenAI 模型
pip install openai
export OPENAI_API_KEY=your-openai-api-key
inspect eval arc.py --model openai/gpt-4
示例:使用 Anthropic 模型
pip install anthropic
export ANTHROPIC_API_KEY=your-anthropic-api-key
inspect eval arc.py --model anthropic/claude-3-opus-20240229
编写评估脚本
以下是一个简单的评估脚本示例,展示了如何使用 Inspect AI 进行评估:
from inspect_ai import Task, eval, task
from inspect_ai.dataset import example_dataset
from inspect_ai.scorer import model_graded_fact
from inspect_ai.solver import (
chain_of_thought,
generate,
self_critique
)
@task
def theory_of_mind():
return Task(
dataset=example_dataset("theory_of_mind"),
plan=[
chain_of_thought(),
generate(),
self_critique()
],
scorer=model_graded_fact()
)
运行评估
使用以下命令运行评估:
inspect eval theory_of_mind.py --model openai/gpt-4
3. 应用案例和最佳实践
案例:Sally-Anne 测试
Sally-Anne 测试用于评估一个人推断他人错误信念的能力。以下是一个使用 Inspect AI 进行 Sally-Anne 测试的示例:
from inspect_ai import Task, eval, task
from inspect_ai.dataset import example_dataset
from inspect_ai.scorer import model_graded_fact
from inspect_ai.solver import (
chain_of_thought,
generate,
self_critique
)
@task
def sally_anne_test():
return Task(
dataset=example_dataset("sally_anne"),
plan=[
chain_of_thought(),
generate(),
self_critique()
],
scorer=model_graded_fact()
)
最佳实践
- 自定义提示模板:根据具体的数据集和评估需求,自定义提示模板以提高评估的准确性。
- 多模型评估:使用 Inspect AI 同时评估多个模型,比较它们的性能。
- 日志分析:使用 Inspect AI 的日志查看器分析评估结果,调试和优化评估脚本。
4. 典型生态项目
1. OpenAI API
OpenAI API 是一个广泛使用的模型提供商,支持多种大型语言模型。Inspect AI 可以与 OpenAI API 无缝集成,进行模型评估和优化。
2. Anthropic API
Anthropic API 提供了 Claude 系列模型,适用于需要高度可靠性和安全性的应用场景。Inspect AI 可以用于评估这些模型的性能。
3. Hugging Face Transformers
Hugging Face Transformers 是一个流行的开源库,提供了多种预训练模型。Inspect AI 可以与 Hugging Face Transformers 集成,进行模型评估和优化。
4. Azure AI
Azure AI 提供了多种云端模型服务,Inspect AI 可以与 Azure AI 集成,进行模型评估和优化。
通过这些生态项目的集成,Inspect AI 可以帮助开发者更全面地评估和优化大型语言模型的性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00