探索未来智能导航:Semantic SLAM 开源项目
在这个快速发展的机器人时代,我们正面临着一个新挑战——如何让机器理解并适应复杂的环境。为此,我们向您隆重推荐 Semantic SLAM —— 一项基于ROS的前沿项目,它集成了ORB SLAM和PSPNet101,旨在为自动驾驶系统提供语义理解和导航功能。
1、项目介绍
Semantic SLAM是一个持续研发的项目,它的目标是构建一个能够实时分析周围环境的语义地图。通过融合视觉信息与SLAM(Simultaneous Localization And Mapping)技术,该项目不仅提供了位置和轨迹信息,还能识别建筑物、植被、车辆以及道路等物体。系统采用可视化的方式呈现这些信息,使用户能够通过Rviz进行查看。
此外,它还生成了包含建筑物位置和轨迹的语义拓扑图,极大地提高了自动导航的精确性和安全性。
2、项目技术分析
在技术层面,项目利用ROS作为框架,结合ORB SLAM实现精确的定位与建图,同时引入PSPNet101进行深度学习的语义分割。这种集成方式使得机器人可以对环境进行语义级别的理解和解析,从而提高其自主导航的能力。
项目结构清晰,便于扩展和维护,如下所示:
catkin_ws/
src/
map_generator/
CMakeList.txt
src/
cluster.py
map_engine.py
Third_Part/
ORB_SLAM/
PSPNet_Keras_tensorflow/
test/
result/
.gitignore
README.md
run.sh
3、项目及技术应用场景
Semantic SLAM适用于各种大型室外环境,如城市街道、校园、公园等。它可以用于无人机自主飞行、无人驾驶汽车导航、机器人探索等领域,提供强大的语义理解和路径规划支持。
4、项目特点
- 实时性:系统实现了实时融合和语义地图更新,有效提升了导航效率。
- 高效性:通过ROS和Tensorflow-GPU的集成,系统运行速度快,适合实时应用。
- 兼容性:支持多种数据来源和设备,如相机图像流
/camera/image_raw
。 - 可扩展性:项目结构清晰,易于添加新的传感器数据或算法模块。
最新更新 开发者已将语义融合模式整合到SLAM系统中,提高了实时融合性能和闭环检测效果。同时实现了地图保存、加载和定位模式。
入门指南
确保您的开发环境中安装了ROS Kinetic、Python 2.7、scipy、sklearn以及必要的深度学习库。按照项目提供的说明配置ORB SLAM和PSPNet,并运行shell脚本"run_C.sh"即可体验这一创新技术。
让我们一起开启这场智能导航的新旅程,通过 Semantic SLAM 为未来的机器人世界揭开新篇章!如果您在研究中使用了这个项目,请引用以下文献:
@INPROCEEDINGS{zhao2019slam,
author={Z. {Zhao} and Y. {Mao} and Y. {Ding} and P. {Ren} and N. {Zheng}},
booktitle={2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI)},
title={Visual-Based Semantic SLAM with Landmarks for Large-Scale Outdoor Environment},
year={2019},
volume={},
number={},
pages={149-154},
keywords={Semantic SLAM;Visual SLAM;Large-Scale SLAM;Semantic Segmentation;Landmark-level Semantic Mapping},
doi={10.1109/CCHI.2019.8901910},
ISSN={null},
month={Sep.},}
加入我们,共同探索未来,贡献智慧!
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









