探索未来智能导航:Semantic SLAM 开源项目
在这个快速发展的机器人时代,我们正面临着一个新挑战——如何让机器理解并适应复杂的环境。为此,我们向您隆重推荐 Semantic SLAM —— 一项基于ROS的前沿项目,它集成了ORB SLAM和PSPNet101,旨在为自动驾驶系统提供语义理解和导航功能。
1、项目介绍
Semantic SLAM是一个持续研发的项目,它的目标是构建一个能够实时分析周围环境的语义地图。通过融合视觉信息与SLAM(Simultaneous Localization And Mapping)技术,该项目不仅提供了位置和轨迹信息,还能识别建筑物、植被、车辆以及道路等物体。系统采用可视化的方式呈现这些信息,使用户能够通过Rviz进行查看。
此外,它还生成了包含建筑物位置和轨迹的语义拓扑图,极大地提高了自动导航的精确性和安全性。
2、项目技术分析
在技术层面,项目利用ROS作为框架,结合ORB SLAM实现精确的定位与建图,同时引入PSPNet101进行深度学习的语义分割。这种集成方式使得机器人可以对环境进行语义级别的理解和解析,从而提高其自主导航的能力。
项目结构清晰,便于扩展和维护,如下所示:
catkin_ws/
src/
map_generator/
CMakeList.txt
src/
cluster.py
map_engine.py
Third_Part/
ORB_SLAM/
PSPNet_Keras_tensorflow/
test/
result/
.gitignore
README.md
run.sh
3、项目及技术应用场景
Semantic SLAM适用于各种大型室外环境,如城市街道、校园、公园等。它可以用于无人机自主飞行、无人驾驶汽车导航、机器人探索等领域,提供强大的语义理解和路径规划支持。
4、项目特点
- 实时性:系统实现了实时融合和语义地图更新,有效提升了导航效率。
- 高效性:通过ROS和Tensorflow-GPU的集成,系统运行速度快,适合实时应用。
- 兼容性:支持多种数据来源和设备,如相机图像流
/camera/image_raw
。 - 可扩展性:项目结构清晰,易于添加新的传感器数据或算法模块。
最新更新 开发者已将语义融合模式整合到SLAM系统中,提高了实时融合性能和闭环检测效果。同时实现了地图保存、加载和定位模式。
入门指南
确保您的开发环境中安装了ROS Kinetic、Python 2.7、scipy、sklearn以及必要的深度学习库。按照项目提供的说明配置ORB SLAM和PSPNet,并运行shell脚本"run_C.sh"即可体验这一创新技术。
让我们一起开启这场智能导航的新旅程,通过 Semantic SLAM 为未来的机器人世界揭开新篇章!如果您在研究中使用了这个项目,请引用以下文献:
@INPROCEEDINGS{zhao2019slam,
author={Z. {Zhao} and Y. {Mao} and Y. {Ding} and P. {Ren} and N. {Zheng}},
booktitle={2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI)},
title={Visual-Based Semantic SLAM with Landmarks for Large-Scale Outdoor Environment},
year={2019},
volume={},
number={},
pages={149-154},
keywords={Semantic SLAM;Visual SLAM;Large-Scale SLAM;Semantic Segmentation;Landmark-level Semantic Mapping},
doi={10.1109/CCHI.2019.8901910},
ISSN={null},
month={Sep.},}
加入我们,共同探索未来,贡献智慧!
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie034
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04