探索未来智能导航:Semantic SLAM 开源项目
在这个快速发展的机器人时代,我们正面临着一个新挑战——如何让机器理解并适应复杂的环境。为此,我们向您隆重推荐 Semantic SLAM —— 一项基于ROS的前沿项目,它集成了ORB SLAM和PSPNet101,旨在为自动驾驶系统提供语义理解和导航功能。
1、项目介绍
Semantic SLAM是一个持续研发的项目,它的目标是构建一个能够实时分析周围环境的语义地图。通过融合视觉信息与SLAM(Simultaneous Localization And Mapping)技术,该项目不仅提供了位置和轨迹信息,还能识别建筑物、植被、车辆以及道路等物体。系统采用可视化的方式呈现这些信息,使用户能够通过Rviz进行查看。

此外,它还生成了包含建筑物位置和轨迹的语义拓扑图,极大地提高了自动导航的精确性和安全性。
2、项目技术分析
在技术层面,项目利用ROS作为框架,结合ORB SLAM实现精确的定位与建图,同时引入PSPNet101进行深度学习的语义分割。这种集成方式使得机器人可以对环境进行语义级别的理解和解析,从而提高其自主导航的能力。
项目结构清晰,便于扩展和维护,如下所示:
catkin_ws/
src/
map_generator/
CMakeList.txt
src/
cluster.py
map_engine.py
Third_Part/
ORB_SLAM/
PSPNet_Keras_tensorflow/
test/
result/
.gitignore
README.md
run.sh
3、项目及技术应用场景
Semantic SLAM适用于各种大型室外环境,如城市街道、校园、公园等。它可以用于无人机自主飞行、无人驾驶汽车导航、机器人探索等领域,提供强大的语义理解和路径规划支持。
4、项目特点
- 实时性:系统实现了实时融合和语义地图更新,有效提升了导航效率。
- 高效性:通过ROS和Tensorflow-GPU的集成,系统运行速度快,适合实时应用。
- 兼容性:支持多种数据来源和设备,如相机图像流
/camera/image_raw。 - 可扩展性:项目结构清晰,易于添加新的传感器数据或算法模块。
最新更新 开发者已将语义融合模式整合到SLAM系统中,提高了实时融合性能和闭环检测效果。同时实现了地图保存、加载和定位模式。
入门指南
确保您的开发环境中安装了ROS Kinetic、Python 2.7、scipy、sklearn以及必要的深度学习库。按照项目提供的说明配置ORB SLAM和PSPNet,并运行shell脚本"run_C.sh"即可体验这一创新技术。
让我们一起开启这场智能导航的新旅程,通过 Semantic SLAM 为未来的机器人世界揭开新篇章!如果您在研究中使用了这个项目,请引用以下文献:
@INPROCEEDINGS{zhao2019slam,
author={Z. {Zhao} and Y. {Mao} and Y. {Ding} and P. {Ren} and N. {Zheng}},
booktitle={2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI)},
title={Visual-Based Semantic SLAM with Landmarks for Large-Scale Outdoor Environment},
year={2019},
volume={},
number={},
pages={149-154},
keywords={Semantic SLAM;Visual SLAM;Large-Scale SLAM;Semantic Segmentation;Landmark-level Semantic Mapping},
doi={10.1109/CCHI.2019.8901910},
ISSN={null},
month={Sep.},}
加入我们,共同探索未来,贡献智慧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00