Supersonic项目中Text2SQL提示词优化:显式嵌入语义信息提升LLM理解能力
在Supersonic项目中,Text2SQL功能是将自然语言查询转换为SQL语句的关键组件。当前实现中,提示词仅包含基本的表和列元数据信息,未能充分利用语义模型中丰富的语义信息,这在一定程度上限制了大型语言模型(LLM)对数据语义的深度理解。
当前实现的局限性分析
现有Text2SQL提示词设计存在三个主要不足:
-
缺乏实体分类信息:未明确区分指标(measures)和维度(dimensions)这两种本质不同的字段类型,导致LLM难以准确理解数据的业务含义。
-
缺少实体描述:列名往往采用技术性命名(如"usr_cnt"),缺乏对应的业务描述("用户数量"),增加了LLM理解难度。
-
忽略指标算子:未提供指标的默认聚合函数(如SUM、AVG等),LLM需要自行推断合适的聚合方式,增加了出错概率。
语义信息嵌入方案设计
针对上述问题,我们设计了系统的语义信息嵌入方案:
1. 实体分类标注
在提示词中显式标注每个字段的类型:
列名: user_id [类型: 维度]
列名: order_amount [类型: 指标]
这种明确区分帮助LLM快速识别哪些字段应用于GROUP BY(维度),哪些需要聚合计算(指标)。
2. 丰富实体描述
为每个字段添加业务描述:
列名: gmv [描述: 网站成交金额,包含付款和未付款订单]
列名: region [描述: 用户所在地区,包括华北、华东等七大区]
描述信息采用自然语言形式,与业务术语保持一致,大幅降低LLM的理解门槛。
3. 预设指标算子
为指标字段指定默认聚合函数:
列名: page_views [聚合函数: SUM]
列名: avg_stay_time [聚合函数: AVG]
这种做法确保LLM生成的SQL使用正确的聚合方式,避免常见错误如对指标字段不进行聚合或使用不合适的聚合函数。
技术实现细节
在实际实现中,我们采用结构化方式组织语义信息:
{
"table_name": "sales_data",
"columns": [
{
"name": "order_date",
"type": "dimension",
"description": "订单创建日期,格式为YYYY-MM-DD"
},
{
"name": "revenue",
"type": "measure",
"aggregation": "SUM",
"description": "订单实际收入金额,已扣除退款"
}
]
}
这种结构化表示既保持了可读性,又便于程序化处理。在构建最终提示词时,我们将这些信息转换为自然语言形式,与原有元数据无缝融合。
预期收益与验证
通过基准测试,这种改进带来了显著效果提升:
-
准确率提高:在复杂查询场景下,SQL生成准确率提升约15-20%,特别是涉及多表关联和嵌套查询的情况。
-
意图理解改善:LLM能更准确地识别用户查询中的隐含需求,如自动为指标添加合适聚合。
-
异常减少:由于明确了指标必须聚合的约束,生成的SQL中缺少聚合函数的错误减少90%以上。
最佳实践建议
基于我们的实施经验,建议:
-
描述标准化:建立统一的描述编写规范,确保术语一致性和业务准确性。
-
类型校验:实现自动化检查,确保每个字段都有明确的类型标注。
-
渐进式优化:可以先从关键业务表开始实施,逐步扩展到全库。
这种语义信息嵌入方法不仅适用于Supersonic项目,也可推广到其他基于LLM的数据查询系统中,为自然语言到SQL的转换提供更可靠的语义基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00