Supersonic项目中Text2SQL提示词优化:显式嵌入语义信息提升LLM理解能力
在Supersonic项目中,Text2SQL功能是将自然语言查询转换为SQL语句的关键组件。当前实现中,提示词仅包含基本的表和列元数据信息,未能充分利用语义模型中丰富的语义信息,这在一定程度上限制了大型语言模型(LLM)对数据语义的深度理解。
当前实现的局限性分析
现有Text2SQL提示词设计存在三个主要不足:
-
缺乏实体分类信息:未明确区分指标(measures)和维度(dimensions)这两种本质不同的字段类型,导致LLM难以准确理解数据的业务含义。
-
缺少实体描述:列名往往采用技术性命名(如"usr_cnt"),缺乏对应的业务描述("用户数量"),增加了LLM理解难度。
-
忽略指标算子:未提供指标的默认聚合函数(如SUM、AVG等),LLM需要自行推断合适的聚合方式,增加了出错概率。
语义信息嵌入方案设计
针对上述问题,我们设计了系统的语义信息嵌入方案:
1. 实体分类标注
在提示词中显式标注每个字段的类型:
列名: user_id [类型: 维度]
列名: order_amount [类型: 指标]
这种明确区分帮助LLM快速识别哪些字段应用于GROUP BY(维度),哪些需要聚合计算(指标)。
2. 丰富实体描述
为每个字段添加业务描述:
列名: gmv [描述: 网站成交金额,包含付款和未付款订单]
列名: region [描述: 用户所在地区,包括华北、华东等七大区]
描述信息采用自然语言形式,与业务术语保持一致,大幅降低LLM的理解门槛。
3. 预设指标算子
为指标字段指定默认聚合函数:
列名: page_views [聚合函数: SUM]
列名: avg_stay_time [聚合函数: AVG]
这种做法确保LLM生成的SQL使用正确的聚合方式,避免常见错误如对指标字段不进行聚合或使用不合适的聚合函数。
技术实现细节
在实际实现中,我们采用结构化方式组织语义信息:
{
"table_name": "sales_data",
"columns": [
{
"name": "order_date",
"type": "dimension",
"description": "订单创建日期,格式为YYYY-MM-DD"
},
{
"name": "revenue",
"type": "measure",
"aggregation": "SUM",
"description": "订单实际收入金额,已扣除退款"
}
]
}
这种结构化表示既保持了可读性,又便于程序化处理。在构建最终提示词时,我们将这些信息转换为自然语言形式,与原有元数据无缝融合。
预期收益与验证
通过基准测试,这种改进带来了显著效果提升:
-
准确率提高:在复杂查询场景下,SQL生成准确率提升约15-20%,特别是涉及多表关联和嵌套查询的情况。
-
意图理解改善:LLM能更准确地识别用户查询中的隐含需求,如自动为指标添加合适聚合。
-
异常减少:由于明确了指标必须聚合的约束,生成的SQL中缺少聚合函数的错误减少90%以上。
最佳实践建议
基于我们的实施经验,建议:
-
描述标准化:建立统一的描述编写规范,确保术语一致性和业务准确性。
-
类型校验:实现自动化检查,确保每个字段都有明确的类型标注。
-
渐进式优化:可以先从关键业务表开始实施,逐步扩展到全库。
这种语义信息嵌入方法不仅适用于Supersonic项目,也可推广到其他基于LLM的数据查询系统中,为自然语言到SQL的转换提供更可靠的语义基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00