Transformer Reinforcement Learning X:大规模强化学习框架
2024-09-20 09:22:50作者:蔡丛锟
项目介绍
Transformer Reinforcement Learning X (trlX) 是一个专为大规模语言模型微调而设计的分布式训练框架。它利用强化学习技术,通过提供的奖励函数或奖励标注数据集来优化语言模型。trlX 支持对高达 20B 参数的模型进行微调,如 facebook/opt-6.7b、EleutherAI/gpt-neox-20b 和 google/flan-t5-xxl。对于超过 20B 参数的模型,trlX 提供了基于 NVIDIA NeMo 的训练器,利用高效的并行技术进行扩展。
项目技术分析
trlX 的核心技术包括:
- 强化学习算法:目前支持 Proximal Policy Optimization (PPO) 和 Implicit Language Q-Learning (ILQL) 两种算法。
- 分布式训练:通过 Hugging Face 的 Accelerate 和 NVIDIA 的 NeMo 框架,trlX 能够高效地进行分布式训练。
- 模型支持:支持多种大型语言模型,包括 GPT、T5 等。
- 灵活的训练配置:用户可以通过配置文件自定义训练参数,如批量大小、序列长度等。
项目及技术应用场景
trlX 适用于以下场景:
- 对话系统优化:通过强化学习优化对话生成模型,提升对话质量和用户满意度。
- 文本生成任务:如新闻生成、故事创作等,通过奖励函数优化生成文本的质量。
- 代码生成:优化代码生成模型,提高代码的正确性和可读性。
- 数据增强:通过强化学习生成高质量的训练数据,提升模型的泛化能力。
项目特点
- 高效性:利用分布式训练技术,能够高效地处理大规模语言模型。
- 灵活性:支持多种强化学习算法和模型,用户可以根据需求选择合适的配置。
- 易用性:提供了详细的文档和示例代码,方便用户快速上手。
- 扩展性:支持多种模型和训练框架,能够适应不同的应用场景。
总结
trlX 是一个功能强大且灵活的强化学习框架,特别适合大规模语言模型的微调任务。无论你是研究者还是开发者,trlX 都能为你提供高效的解决方案。快来尝试吧!
📖 文档
🧀 CHEESE:用于强化学习应用的人类标注数据收集库。
安装
git clone https://github.com/CarperAI/trlx.git
cd trlx
pip install torch --extra-index-url https://download.pytorch.org/whl/cu118
pip install -e .
示例
更多使用示例请参考 examples。你也可以尝试以下 Colab 笔记本:
| 描述 | 链接 |
|---|---|
| Simulacra (GPT2, ILQL) | |
| Sentiment (GPT2, ILQL) |
最新运行示例请查看 Weights & Biases。
如何训练
你可以使用奖励函数或奖励标注数据集来训练模型。
使用奖励函数
trainer = trlx.train('gpt2', reward_fn=lambda samples, **kwargs: [sample.count('cats') for sample in samples])
使用奖励标注数据集
trainer = trlx.train('EleutherAI/gpt-j-6B', samples=['dolphins', 'geese'], rewards=[1.0, 100.0])
使用提示-完成数据集
trainer = trlx.train('gpt2', samples=[['Question: 1 + 2 Answer:', '3'], ['Question: Solve this equation: ∀n>0, s=2, sum(n ** -s). Answer:', '(pi ** 2)/ 6']])
配置超参数
from trlx.data.default_configs import default_ppo_config
config = default_ppo_config()
config.model.model_path = 'EleutherAI/gpt-neox-20b'
config.tokenizer.tokenizer_path = 'EleutherAI/gpt-neox-20b'
config.train.seq_length = 2048
trainer = trlx.train(config=config, reward_fn=lambda samples, **kwargs: [len(sample) for sample in samples])
保存模型
trainer.save_pretrained('/path/to/output/folder/')
贡献
引用
@inproceedings{havrilla-etal-2023-trlx,
title = "trl{X}: A Framework for Large Scale Reinforcement Learning from Human Feedback",
author = "Havrilla, Alexander and
Zhuravinskyi, Maksym and
Phung, Duy and
Tiwari, Aman and
Tow, Jonathan and
Biderman, Stella and
Anthony, Quentin and
Castricato, Louis",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.530",
doi = "10.18653/v1/2023.emnlp-main.530",
pages = "8578--8595",
}
致谢
特别感谢 Leandro von Werra 对 trl 的贡献,该库最初启发了本项目的开发。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249