Transformer Reinforcement Learning X:大规模强化学习框架
2024-09-20 09:22:50作者:蔡丛锟
项目介绍
Transformer Reinforcement Learning X (trlX) 是一个专为大规模语言模型微调而设计的分布式训练框架。它利用强化学习技术,通过提供的奖励函数或奖励标注数据集来优化语言模型。trlX 支持对高达 20B 参数的模型进行微调,如 facebook/opt-6.7b、EleutherAI/gpt-neox-20b 和 google/flan-t5-xxl。对于超过 20B 参数的模型,trlX 提供了基于 NVIDIA NeMo 的训练器,利用高效的并行技术进行扩展。
项目技术分析
trlX 的核心技术包括:
- 强化学习算法:目前支持 Proximal Policy Optimization (PPO) 和 Implicit Language Q-Learning (ILQL) 两种算法。
- 分布式训练:通过 Hugging Face 的 Accelerate 和 NVIDIA 的 NeMo 框架,trlX 能够高效地进行分布式训练。
- 模型支持:支持多种大型语言模型,包括 GPT、T5 等。
- 灵活的训练配置:用户可以通过配置文件自定义训练参数,如批量大小、序列长度等。
项目及技术应用场景
trlX 适用于以下场景:
- 对话系统优化:通过强化学习优化对话生成模型,提升对话质量和用户满意度。
- 文本生成任务:如新闻生成、故事创作等,通过奖励函数优化生成文本的质量。
- 代码生成:优化代码生成模型,提高代码的正确性和可读性。
- 数据增强:通过强化学习生成高质量的训练数据,提升模型的泛化能力。
项目特点
- 高效性:利用分布式训练技术,能够高效地处理大规模语言模型。
- 灵活性:支持多种强化学习算法和模型,用户可以根据需求选择合适的配置。
- 易用性:提供了详细的文档和示例代码,方便用户快速上手。
- 扩展性:支持多种模型和训练框架,能够适应不同的应用场景。
总结
trlX 是一个功能强大且灵活的强化学习框架,特别适合大规模语言模型的微调任务。无论你是研究者还是开发者,trlX 都能为你提供高效的解决方案。快来尝试吧!
📖 文档
🧀 CHEESE:用于强化学习应用的人类标注数据收集库。
安装
git clone https://github.com/CarperAI/trlx.git
cd trlx
pip install torch --extra-index-url https://download.pytorch.org/whl/cu118
pip install -e .
示例
更多使用示例请参考 examples。你也可以尝试以下 Colab 笔记本:
| 描述 | 链接 |
|---|---|
| Simulacra (GPT2, ILQL) | |
| Sentiment (GPT2, ILQL) |
最新运行示例请查看 Weights & Biases。
如何训练
你可以使用奖励函数或奖励标注数据集来训练模型。
使用奖励函数
trainer = trlx.train('gpt2', reward_fn=lambda samples, **kwargs: [sample.count('cats') for sample in samples])
使用奖励标注数据集
trainer = trlx.train('EleutherAI/gpt-j-6B', samples=['dolphins', 'geese'], rewards=[1.0, 100.0])
使用提示-完成数据集
trainer = trlx.train('gpt2', samples=[['Question: 1 + 2 Answer:', '3'], ['Question: Solve this equation: ∀n>0, s=2, sum(n ** -s). Answer:', '(pi ** 2)/ 6']])
配置超参数
from trlx.data.default_configs import default_ppo_config
config = default_ppo_config()
config.model.model_path = 'EleutherAI/gpt-neox-20b'
config.tokenizer.tokenizer_path = 'EleutherAI/gpt-neox-20b'
config.train.seq_length = 2048
trainer = trlx.train(config=config, reward_fn=lambda samples, **kwargs: [len(sample) for sample in samples])
保存模型
trainer.save_pretrained('/path/to/output/folder/')
贡献
引用
@inproceedings{havrilla-etal-2023-trlx,
title = "trl{X}: A Framework for Large Scale Reinforcement Learning from Human Feedback",
author = "Havrilla, Alexander and
Zhuravinskyi, Maksym and
Phung, Duy and
Tiwari, Aman and
Tow, Jonathan and
Biderman, Stella and
Anthony, Quentin and
Castricato, Louis",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.530",
doi = "10.18653/v1/2023.emnlp-main.530",
pages = "8578--8595",
}
致谢
特别感谢 Leandro von Werra 对 trl 的贡献,该库最初启发了本项目的开发。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143