InternLM-XComposer项目中的Lora微调模型合并后使用问题解析
2025-06-28 03:44:33作者:咎竹峻Karen
在InternLM-XComposer项目中进行Lora微调时,开发者可能会遇到一个典型的技术问题:当使用xcomposer2.5进行Lora微调并最终合并模型后,在使用lmdeploy工具时出现类型错误。
问题现象
当开发者完成Lora微调并将模型合并后,尝试使用lmdeploy工具加载模型时,系统会抛出类型错误:"TypeError: can only concatenate str (not "NoneType") to str"。具体错误发生在xcomposer2.py文件的第281行,提示无法将字符串与NoneType类型进行拼接。
问题根源分析
经过深入排查,发现问题的根本原因在于模型合并后,lmdeploy工具中的chat_template无法正确识别模型名称。具体表现为:
- 合并后的模型在lmdeploy的chat_template中,模型名称未被正确识别为"internlm-xcomposer2d5"
- 这导致chat_template.messages2prompt()方法返回None值,而非预期的字符串
- 当系统尝试将prefix_image_token(字符串)与None值拼接时,便触发了类型错误
解决方案
解决此问题的关键在于确保模型输出文件夹的名称与模型内部名称保持一致。具体操作建议如下:
- 在进行模型合并操作时,确保输出文件夹名称明确包含"internlm-xcomposer2d5"标识
- 检查模型配置文件,确认模型名称定义与文件夹命名一致
- 如果使用自定义名称,需要同步修改lmdeploy中相关配置以匹配
最佳实践建议
为避免此类问题,建议开发者在进行Lora微调和模型合并时遵循以下规范:
- 保持模型命名一致性:从原始模型到微调后的模型,保持核心名称不变
- 仔细检查合并脚本:确保合并过程不会意外修改模型内部标识
- 预先测试:在正式部署前,先进行小规模测试验证模型可用性
- 文档记录:详细记录模型变更历史,便于问题追踪
技术启示
这一问题揭示了深度学习模型部署中的一个重要原则:模型标识的一致性对于下游工具链的兼容性至关重要。特别是在使用微调和模型合并技术时,开发者需要特别注意保持模型元信息的完整性,以确保与各类推理工具的兼容性。
通过遵循上述建议,开发者可以避免类似问题,确保InternLM-XComposer项目的Lora微调模型能够顺利部署和使用。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5