InternLM-XComposer项目中的Lora微调模型合并后使用问题解析
2025-06-28 03:44:33作者:咎竹峻Karen
在InternLM-XComposer项目中进行Lora微调时,开发者可能会遇到一个典型的技术问题:当使用xcomposer2.5进行Lora微调并最终合并模型后,在使用lmdeploy工具时出现类型错误。
问题现象
当开发者完成Lora微调并将模型合并后,尝试使用lmdeploy工具加载模型时,系统会抛出类型错误:"TypeError: can only concatenate str (not "NoneType") to str"。具体错误发生在xcomposer2.py文件的第281行,提示无法将字符串与NoneType类型进行拼接。
问题根源分析
经过深入排查,发现问题的根本原因在于模型合并后,lmdeploy工具中的chat_template无法正确识别模型名称。具体表现为:
- 合并后的模型在lmdeploy的chat_template中,模型名称未被正确识别为"internlm-xcomposer2d5"
- 这导致chat_template.messages2prompt()方法返回None值,而非预期的字符串
- 当系统尝试将prefix_image_token(字符串)与None值拼接时,便触发了类型错误
解决方案
解决此问题的关键在于确保模型输出文件夹的名称与模型内部名称保持一致。具体操作建议如下:
- 在进行模型合并操作时,确保输出文件夹名称明确包含"internlm-xcomposer2d5"标识
- 检查模型配置文件,确认模型名称定义与文件夹命名一致
- 如果使用自定义名称,需要同步修改lmdeploy中相关配置以匹配
最佳实践建议
为避免此类问题,建议开发者在进行Lora微调和模型合并时遵循以下规范:
- 保持模型命名一致性:从原始模型到微调后的模型,保持核心名称不变
- 仔细检查合并脚本:确保合并过程不会意外修改模型内部标识
- 预先测试:在正式部署前,先进行小规模测试验证模型可用性
- 文档记录:详细记录模型变更历史,便于问题追踪
技术启示
这一问题揭示了深度学习模型部署中的一个重要原则:模型标识的一致性对于下游工具链的兼容性至关重要。特别是在使用微调和模型合并技术时,开发者需要特别注意保持模型元信息的完整性,以确保与各类推理工具的兼容性。
通过遵循上述建议,开发者可以避免类似问题,确保InternLM-XComposer项目的Lora微调模型能够顺利部署和使用。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8