Marqo 2.15.0版本发布:多模态搜索与混合搜索优化
项目简介
Marqo是一个开源的向量搜索引擎,专注于提供高效的多模态搜索能力。它能够处理文本、图像、音频和视频等多种数据类型,通过深度学习模型将这些数据转换为向量表示,从而实现跨模态的相似性搜索。Marqo特别适合需要处理复杂多媒体内容的应用程序,如电子商务、内容推荐系统和知识管理等场景。
2.15.0版本核心更新
混合搜索全局分数调整机制
2.15.0版本引入了混合搜索的全局分数调整功能,这是对现有混合搜索能力的重要增强。混合搜索结合了传统关键词搜索和向量搜索的优势,使用RRF(Reciprocal Rank Fusion)算法合并两种搜索结果。
新版本允许开发者通过rerankDepth参数精确控制重新排序的文档数量,从而实现对最终结果列表的精细调整。这一改进特别适用于需要平衡关键词匹配和语义相似度的复杂搜索场景,比如电商平台中既要考虑产品名称精确匹配又要兼顾视觉相似性的商品搜索。
自定义LanguageBind模型支持
Marqo现在支持加载自定义的LanguageBind模型,这是对多模态处理能力的重要扩展。LanguageBind是一种能够统一处理多种模态数据的深度学习模型,新版本允许用户:
- 从S3存储桶直接加载预训练模型
- 通过URL获取模型文件
- 使用HuggingFace模型库中的自定义模型
这项功能使得用户能够针对特定领域数据微调自己的多模态模型,从而获得更好的领域内搜索效果。例如,医疗影像分析领域可以训练专门的模型来理解医学图像的独特特征。
模型注册表更新
2.15.0版本对内置模型注册表进行了重要更新,整合了Marqtune系列模型并统一了命名规范。这一变更虽然保持了向后兼容性,但使得模型选择更加直观和一致,简化了开发者的模型选择过程。
技术优化与问题修复
本次版本还包含多项技术优化和问题修复:
- 修复了非结构化索引中字段模态推断错误的问题,提高了搜索的准确性
- 改进了LanguageBind模型对多视频/音频输入的处理能力,现在可以同时处理多个媒体文件的加权搜索查询
- 优化了使用LanguageBind模型索引图像文档时的内存使用效率,提升了大规模图像数据集的处理能力
应用前景
Marqo 2.15.0版本的这些改进为开发者提供了更强大的工具来构建复杂的多模态搜索应用。特别是自定义模型支持和混合搜索优化,使得系统能够更好地适应特定领域的搜索需求,为用户提供更精准的搜索结果。
随着多模态AI技术的快速发展,Marqo这类专注于多模态搜索的工具将在内容理解、跨模态检索等领域发挥越来越重要的作用。2.15.0版本的发布标志着Marqo在多模态搜索领域的又一次重要进步。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C041
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00