Typesense 项目中的多模态向量搜索技术实践
2025-05-09 01:39:50作者:何将鹤
在当今的电商推荐系统中,结合图像和文本的多模态搜索技术正变得越来越重要。Typesense 作为一款高性能的开源搜索引擎,在最新版本中通过集成 CLIP 模型,实现了对多模态向量搜索的原生支持。
多模态向量搜索的技术背景
CLIP(Contrastive Language-Image Pretraining)是 OpenAI 开发的一种多模态模型,能够同时理解图像和文本内容。传统的搜索系统通常只能处理单一模态的数据,而 CLIP 的出现使得系统能够同时利用视觉和语言信息进行更精准的搜索。
在电商场景中,商品通常包含图片和文字描述两种信息。单独使用图像或文本进行搜索往往无法获得最佳效果。通过 CLIP 模型,我们可以同时提取商品的图像特征和文本特征,然后将这些特征融合,生成更全面的商品表示。
Typesense 中的实现方案
Typesense 0.27.0.rc25 版本开始支持从多个字段生成 CLIP 嵌入向量。在集合定义中,开发者可以在 embed.from 数组中指定多个字段(如图像和文本字段),系统会自动将这些字段的嵌入向量进行平均融合。
{
"name": "embedding",
"type": "float[]",
"embed": {
"from": ["image", "name"],
"model_config": {
"model_name": "ts/clip-vit-b-p32"
}
}
}
这种实现方式相比早期用户自行拼接向量的方案(将512维图像向量和512维文本向量拼接成1024维向量)有以下优势:
- 兼容性更好:生成的512维向量可以直接用于文本查询
- 计算效率更高:向量维度减半,计算距离时性能更好
- 实现更简洁:无需额外处理查询向量的维度问题
性能优化与存储策略
在实际应用中,Typesense 提供了灵活的字段存储选项来优化性能:
- 对于图像字段,建议使用
index: false而非store: false,这样可以在不建立索引的情况下保留图像数据,避免重复生成嵌入向量 - 系统会智能地只在相关字段更新时才重新生成嵌入向量,减少不必要的计算开销
- 支持从两个以上的字段生成嵌入向量,如
[image, title, description]的组合
应用场景与最佳实践
这种多模态搜索技术特别适合以下场景:
- 电商商品推荐:结合商品图片和名称/描述进行更精准的相似商品推荐
- 内容检索系统:同时考虑图片内容和相关文字说明的内容检索
- 多媒体资产管理:对包含多种媒体类型的资产进行统一搜索
在实际应用中,开发者应该:
- 根据业务需求选择合适的字段组合
- 监控嵌入向量生成和搜索的性能指标
- 通过 A/B 测试验证不同融合策略(平均、拼接等)的效果
未来发展方向
随着多模态AI技术的进步,Typesense 未来可能会支持:
- 更多种类的多模态模型
- 可配置的向量融合策略(如加权平均、拼接等)
- 更精细化的嵌入向量更新控制机制
这种技术的持续演进将为开发者提供更强大的工具来构建智能搜索和推荐系统。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147