Cheshire Cat AI 核心库中的 WhiteRabbit 定时任务扩展设计
在 Cheshire Cat AI 核心库的开发过程中,团队针对 WhiteRabbit 定时任务模块的架构设计进行了深入讨论。本文将详细介绍该模块的技术实现方案及其设计考量。
架构设计思路
WhiteRabbit 作为 Cheshire Cat AI 的定时任务调度模块,其核心功能是为插件开发者提供灵活的任务调度能力。设计团队在架构上采用了分层设计理念:
-
服务定位模式:WhiteRabbit 实例通过 CheshireCat 单例进行全局管理,各 StrayCat 会话通过属性访问器获取共享的 WhiteRabbit 服务实例。这种设计既保证了服务的唯一性,又保持了会话间的隔离性。
-
职责分离原则:明确划分了会话管理(StrayCat)与任务调度(WhiteRabbit)的职责边界。WhiteRabbit 专注于任务调度逻辑,不直接处理会话相关数据。
核心功能实现
WhiteRabbit 基于 APScheduler 实现了三种主流调度模式:
-
单次定时任务(Date):适用于只需执行一次的延时任务,如定时提醒、延迟响应等场景。开发者可以精确指定任务执行的日期和时间。
-
间隔任务(Interval):提供周期性执行能力,支持按固定时间间隔重复执行任务,适用于数据轮询、定期通知等需求。
-
Cron表达式任务:通过类Unix的Cron表达式支持复杂的调度策略,能够实现"每周一上午9点"等精细化的调度需求。
开发者接口设计
考虑到实际使用场景,团队设计了灵活的API调用方式:
# 基本调用方式(不依赖会话)
cat.white_rabbit.schedule_date_task(
task_function,
seconds=10
)
# 会话相关任务调用(显式传递会话)
cat.white_rabbit.schedule_date_task(
session_aware_task,
seconds=5,
cat=current_cat
)
这种设计具有以下优势:
- 保持API简洁性,避免不必要的参数传递
- 提供显式的会话传递机制,增强代码可读性
- 支持会话无关的系统级任务调度
技术决策考量
在架构设计过程中,团队重点考虑了以下因素:
-
一致性原则:保持与项目中其他服务(MadHatter、RabbitHole等)相同的访问模式,降低开发者的学习成本。
-
灵活性需求:通过可选参数而非隐式传递的方式处理会话依赖,使API能够适应更多使用场景。
-
可维护性:清晰的责任划分使得后续功能扩展和问题排查更加容易。
该设计方案已在Cheshire Cat AI核心库中实现,为插件开发者提供了强大而灵活的任务调度能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00