Apache Wink 开源项目快速入门指南
Apache Wink 是一个Java Web框架,用于构建RESTful Web服务。它提供了丰富的功能来支持JAX-RS规范,以及额外的服务和特性,使得开发基于HTTP的服务变得更加简单和高效。下面我们将深入这个开源项目的结构、启动文件和配置文件,帮助您快速上手。
1. 项目目录结构及介绍
Apache Wink的GitHub仓库遵循了典型的Maven项目布局,其主要结构如下:
apache-wink/
├── LICENSE.txt - 许可证文件
├── NOTICE.txt - 注意事项文件
├── pom.xml - Maven的项目对象模型文件,定义了项目的基本信息以及依赖关系等
├── src - 源代码目录
│ ├── main - 主要的源码和资源配置
│ │ ├── java - Java源代码
│ │ │ └── org.apache.wink... - 包含Wink的核心类和组件
│ │ └── resources - 配置文件和其他资源
│ └── test - 测试源码及相关资源
├── README.md - 项目快速入门和说明文档
└── ... - 其他辅助或文档文件
此结构清晰地分隔了应用的不同组成部分,便于维护和理解。
2. 项目的启动文件介绍
在Apache Wink项目中,并没有一个单一的“启动文件”如同传统的main方法入口,因为它是作为库使用而非独立运行的应用程序。不过,若想利用Wink搭建REST服务,开发者通常会在自己的应用程序中通过Spring Boot、Servlet容器(如Tomcat)或其他方式启动含有Wink服务的Web应用。
示例性的启动点可能是在一个使用JAX-RS注解的类或Spring配置类中,例如:
// 示例:一个简单的JAX-RS资源类
@Path("/hello")
public class HelloWorldResource {
@GET
@Produces(MediaType.TEXT_PLAIN)
public String sayHello() {
return "Hello, World!";
}
}
实际部署时,您会在web.xml或对应的Spring Boot配置中指定Wink的Servlet配置来初始化服务。
3. 项目的配置文件介绍
虽然Apache Wink本身内部有许多默认配置,但用户的自定义配置一般不会直接在Wink的源码库中设置,而是通过您的应用程序的配置进行调整。这可能包括在web.xml中的Servlet配置,或者如果是现代的应用架构,则在Spring相关的配置文件或Java配置类中完成。
例如,在web.xml中添加Wink的Servlet配置:
<servlet>
<servlet-name>Apache-Wink-Servlet</servlet-name>
<servlet-class>org.apache.wink.server.internal.servlet.RestServlet</servlet-class>
<init-param>
<param-name>applicationConfigLocation</param-name>
<param-value>/WEB-INF/application-config.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Apache-Wink-Servlet</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>
在上述配置中,/WEB-INF/application-config.xml
是您可能放置特定资源和服务配置的地方,尽管这种直接指定XML配置的方式已经较为老旧,现代应用更倾向于使用Java配置或轻量级配置方案。
请注意,具体配置细节应依据您的应用需求及所使用的Wink版本而定。务必查阅最新版本的Apache Wink官方文档以获取最准确的配置指导。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









