Langchain-ChatGLM项目中RAG与多功能对话的技术实现差异分析
2025-05-04 00:13:16作者:廉彬冶Miranda
在Langchain-ChatGLM项目中,检索增强生成(RAG)与多功能对话是两种不同的对话模式,它们在技术实现上存在显著差异,这直接影响了它们的回答能力和行为表现。本文将深入分析这两种模式的底层机制及其差异。
RAG模式的技术实现
RAG(Retrieval-Augmented Generation)模式本质上是一个检索增强的生成过程,其工作流程可分为三个关键阶段:
- 检索阶段:系统首先在知识库中检索与用户问题相关的文档片段
- 提示词组装:将检索到的相关内容与用户问题一起组装成完整的提示词
- 生成阶段:将组装好的提示词输入大语言模型(LLM)生成最终回答
值得注意的是,项目中默认的RAG实现会在提示词模板中加入严格限制,要求模型仅在检索到相关内容时才回答问题,否则返回"根据已知信息无法回答该问题"。这种设计虽然提高了回答的准确性,但也限制了模型的通用能力。
多功能对话模式的技术特性
多功能对话模式提供了更灵活的交互方式,其核心特点包括:
- 可选的Agent机制:用户可以选择是否启用Agent功能,这将影响系统是否调用外部工具
- 知识库调用的条件性:与RAG不同,多功能对话默认不会主动调用知识库,除非通过特定配置启用
- 更通用的回答能力:由于不受限于知识库内容,多功能对话可以处理更广泛的问题类型
技术实现差异的关键点
两种模式的主要差异体现在以下几个方面:
- 提示词模板设计:RAG模式包含严格的回答限制,而多功能对话的提示词更加开放
- 知识库调用逻辑:RAG强制检索知识库,多功能对话则视配置而定
- 错误处理机制:RAG对无相关知识的情况有预设响应,多功能对话则依赖模型的通用能力
优化建议与实践方案
针对项目中观察到的现象,可以考虑以下优化方向:
- 提示词模板定制:修改RAG的提示词模板,移除严格限制,允许模型在无相关知识时使用其通用知识回答
- 混合模式设计:实现一个智能路由机制,根据问题类型自动选择RAG或通用对话模式
- 相关性阈值调整:设置知识检索的相关性阈值,低于阈值时自动切换到通用回答模式
- 多阶段处理流程:先进行知识检索,再根据结果质量决定是否调用LLM的通用能力
总结
Langchain-ChatGLM项目中的RAG和多功能对话模式各有优势,理解它们的技术实现差异有助于开发者根据实际需求进行合理选择和定制。RAG模式适合需要严格基于知识库回答的场景,而多功能对话则提供了更灵活的交互方式。通过适当的配置和提示词优化,可以在保持准确性的同时扩展系统的回答能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Universal Ctags构建与部署指南 OpenVLA-OFT部署指南:从模型加载到实际应用 【零成本直连革命】2025年最硬核P2P工具goodlink:一条命令穿透NAT实现主机直连(附避坑指南) GitHub Desktop 跨平台安装与配置完全指南 RuoYi-Cloud-Plus云原生:K8s部署完全指南 Mutagen音频元数据处理库入门指南 使用pycatia拆分多实体零件中的独立几何体突破算力瓶颈:Qwen模型并行分布式推理实战指南突破手机端多模态瓶颈:MiniCPM-V 2.6在Ollama平台的部署与优化指南APScheduler异步模式详解:asyncio和Trio集成指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350