Langchain-ChatGLM项目中RAG与多功能对话的技术实现差异分析
2025-05-04 23:12:45作者:廉彬冶Miranda
在Langchain-ChatGLM项目中,检索增强生成(RAG)与多功能对话是两种不同的对话模式,它们在技术实现上存在显著差异,这直接影响了它们的回答能力和行为表现。本文将深入分析这两种模式的底层机制及其差异。
RAG模式的技术实现
RAG(Retrieval-Augmented Generation)模式本质上是一个检索增强的生成过程,其工作流程可分为三个关键阶段:
- 检索阶段:系统首先在知识库中检索与用户问题相关的文档片段
- 提示词组装:将检索到的相关内容与用户问题一起组装成完整的提示词
- 生成阶段:将组装好的提示词输入大语言模型(LLM)生成最终回答
值得注意的是,项目中默认的RAG实现会在提示词模板中加入严格限制,要求模型仅在检索到相关内容时才回答问题,否则返回"根据已知信息无法回答该问题"。这种设计虽然提高了回答的准确性,但也限制了模型的通用能力。
多功能对话模式的技术特性
多功能对话模式提供了更灵活的交互方式,其核心特点包括:
- 可选的Agent机制:用户可以选择是否启用Agent功能,这将影响系统是否调用外部工具
- 知识库调用的条件性:与RAG不同,多功能对话默认不会主动调用知识库,除非通过特定配置启用
- 更通用的回答能力:由于不受限于知识库内容,多功能对话可以处理更广泛的问题类型
技术实现差异的关键点
两种模式的主要差异体现在以下几个方面:
- 提示词模板设计:RAG模式包含严格的回答限制,而多功能对话的提示词更加开放
- 知识库调用逻辑:RAG强制检索知识库,多功能对话则视配置而定
- 错误处理机制:RAG对无相关知识的情况有预设响应,多功能对话则依赖模型的通用能力
优化建议与实践方案
针对项目中观察到的现象,可以考虑以下优化方向:
- 提示词模板定制:修改RAG的提示词模板,移除严格限制,允许模型在无相关知识时使用其通用知识回答
- 混合模式设计:实现一个智能路由机制,根据问题类型自动选择RAG或通用对话模式
- 相关性阈值调整:设置知识检索的相关性阈值,低于阈值时自动切换到通用回答模式
- 多阶段处理流程:先进行知识检索,再根据结果质量决定是否调用LLM的通用能力
总结
Langchain-ChatGLM项目中的RAG和多功能对话模式各有优势,理解它们的技术实现差异有助于开发者根据实际需求进行合理选择和定制。RAG模式适合需要严格基于知识库回答的场景,而多功能对话则提供了更灵活的交互方式。通过适当的配置和提示词优化,可以在保持准确性的同时扩展系统的回答能力。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~043CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5