Langchain-ChatGLM项目中RAG与多功能对话的技术实现差异分析
2025-05-04 00:36:54作者:廉彬冶Miranda
在Langchain-ChatGLM项目中,检索增强生成(RAG)与多功能对话是两种不同的对话模式,它们在技术实现上存在显著差异,这直接影响了它们的回答能力和行为表现。本文将深入分析这两种模式的底层机制及其差异。
RAG模式的技术实现
RAG(Retrieval-Augmented Generation)模式本质上是一个检索增强的生成过程,其工作流程可分为三个关键阶段:
- 检索阶段:系统首先在知识库中检索与用户问题相关的文档片段
- 提示词组装:将检索到的相关内容与用户问题一起组装成完整的提示词
- 生成阶段:将组装好的提示词输入大语言模型(LLM)生成最终回答
值得注意的是,项目中默认的RAG实现会在提示词模板中加入严格限制,要求模型仅在检索到相关内容时才回答问题,否则返回"根据已知信息无法回答该问题"。这种设计虽然提高了回答的准确性,但也限制了模型的通用能力。
多功能对话模式的技术特性
多功能对话模式提供了更灵活的交互方式,其核心特点包括:
- 可选的Agent机制:用户可以选择是否启用Agent功能,这将影响系统是否调用外部工具
- 知识库调用的条件性:与RAG不同,多功能对话默认不会主动调用知识库,除非通过特定配置启用
- 更通用的回答能力:由于不受限于知识库内容,多功能对话可以处理更广泛的问题类型
技术实现差异的关键点
两种模式的主要差异体现在以下几个方面:
- 提示词模板设计:RAG模式包含严格的回答限制,而多功能对话的提示词更加开放
- 知识库调用逻辑:RAG强制检索知识库,多功能对话则视配置而定
- 错误处理机制:RAG对无相关知识的情况有预设响应,多功能对话则依赖模型的通用能力
优化建议与实践方案
针对项目中观察到的现象,可以考虑以下优化方向:
- 提示词模板定制:修改RAG的提示词模板,移除严格限制,允许模型在无相关知识时使用其通用知识回答
- 混合模式设计:实现一个智能路由机制,根据问题类型自动选择RAG或通用对话模式
- 相关性阈值调整:设置知识检索的相关性阈值,低于阈值时自动切换到通用回答模式
- 多阶段处理流程:先进行知识检索,再根据结果质量决定是否调用LLM的通用能力
总结
Langchain-ChatGLM项目中的RAG和多功能对话模式各有优势,理解它们的技术实现差异有助于开发者根据实际需求进行合理选择和定制。RAG模式适合需要严格基于知识库回答的场景,而多功能对话则提供了更灵活的交互方式。通过适当的配置和提示词优化,可以在保持准确性的同时扩展系统的回答能力。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
207
285

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17