XGBoost中的DART树提升器详解
2025-07-07 06:40:13作者:秋阔奎Evelyn
概述
在机器学习领域,XGBoost是一个强大的梯度提升框架,而DART(Dropouts meet Multiple Additive Regression Trees)是XGBoost中一种特殊的树提升器。本文将深入解析DART的工作原理、特性以及使用方法。
DART的背景
传统XGBoost通常结合大量回归树和小学习率进行训练。这种情况下,早期添加的树对模型影响较大,而后期添加的树影响较小。DART借鉴了深度神经网络中的dropout技术,将其应用于提升树模型,在某些场景下能取得更好的效果。
DART的核心思想
DART通过在训练过程中随机"丢弃"(dropout)一些树来解决过拟合问题:
- 防止那些仅用于修正微小错误的"琐碎树"影响模型
- 引入随机性增强模型鲁棒性
- 通过规范化技术保持预测的稳定性
工作原理
在训练的第m轮中:
- 随机选择k棵树进行丢弃
- 设D为被丢弃树的叶子分数总和
- 新树的叶子分数为Fₘ = ηF̃ₘ
- 目标函数为:
\mathrm{Obj} = \sum_{j=1}^n L(y_j, \hat{y}_j^{m-1} - D_j + \tilde{F}_m) + \Omega(\tilde{F}_m) - 使用缩放因子来平衡D和Fₘ的过度影响
关键参数详解
DART继承了gbtree的基本参数(如eta、gamma、max_depth等),并新增了以下特有参数:
采样类型(sample_type)
uniform(默认):均匀随机丢弃树weighted:按权重比例丢弃树
规范化类型(normalize_type)
tree(默认):新树与每棵被丢弃树权重相同forest:新树与被丢弃树的总权重相同
丢弃率(rate_drop)
- 范围:[0.0, 1.0]
- 控制每轮丢弃树的比例
跳过丢弃概率(skip_drop)
- 范围:[0.0, 1.0]
- 跳过丢弃的概率,此时与普通gbtree行为相同
使用注意事项
- 训练速度可能比gbtree慢,因为随机丢弃会阻止使用预测缓冲区
- 由于随机性,早期停止可能不太稳定
- 预测时必须指定ntree_limit参数
示例代码
import xgboost as xgb
# 读取数据
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
# 设置DART参数
param = {
'booster': 'dart',
'max_depth': 5,
'learning_rate': 0.1,
'objective': 'binary:logistic',
'silent': True,
'sample_type': 'uniform',
'normalize_type': 'tree',
'rate_drop': 0.1,
'skip_drop': 0.5
}
# 训练模型
num_round = 50
bst = xgb.train(param, dtrain, num_round)
# 进行预测(必须指定ntree_limit)
preds = bst.predict(dtest, ntree_limit=num_round)
适用场景
DART特别适合以下情况:
- 数据量相对较小,容易过拟合
- 需要更强的正则化效果
- 模型性能达到平台期,需要突破
总结
DART为XGBoost提供了一种创新的正则化方法,通过引入dropout技术增强了模型的泛化能力。虽然训练过程可能稍慢且不太稳定,但在特定场景下能带来显著的性能提升。理解其工作原理和参数配置,可以帮助开发者更好地利用这一强大工具。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
450
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885