XGBoost中的DART树提升器详解
2025-07-07 09:02:55作者:秋阔奎Evelyn
概述
在机器学习领域,XGBoost是一个强大的梯度提升框架,而DART(Dropouts meet Multiple Additive Regression Trees)是XGBoost中一种特殊的树提升器。本文将深入解析DART的工作原理、特性以及使用方法。
DART的背景
传统XGBoost通常结合大量回归树和小学习率进行训练。这种情况下,早期添加的树对模型影响较大,而后期添加的树影响较小。DART借鉴了深度神经网络中的dropout技术,将其应用于提升树模型,在某些场景下能取得更好的效果。
DART的核心思想
DART通过在训练过程中随机"丢弃"(dropout)一些树来解决过拟合问题:
- 防止那些仅用于修正微小错误的"琐碎树"影响模型
- 引入随机性增强模型鲁棒性
- 通过规范化技术保持预测的稳定性
工作原理
在训练的第m轮中:
- 随机选择k棵树进行丢弃
- 设D为被丢弃树的叶子分数总和
- 新树的叶子分数为Fₘ = ηF̃ₘ
- 目标函数为:
\mathrm{Obj} = \sum_{j=1}^n L(y_j, \hat{y}_j^{m-1} - D_j + \tilde{F}_m) + \Omega(\tilde{F}_m) - 使用缩放因子来平衡D和Fₘ的过度影响
关键参数详解
DART继承了gbtree的基本参数(如eta、gamma、max_depth等),并新增了以下特有参数:
采样类型(sample_type)
uniform(默认):均匀随机丢弃树weighted:按权重比例丢弃树
规范化类型(normalize_type)
tree(默认):新树与每棵被丢弃树权重相同forest:新树与被丢弃树的总权重相同
丢弃率(rate_drop)
- 范围:[0.0, 1.0]
- 控制每轮丢弃树的比例
跳过丢弃概率(skip_drop)
- 范围:[0.0, 1.0]
- 跳过丢弃的概率,此时与普通gbtree行为相同
使用注意事项
- 训练速度可能比gbtree慢,因为随机丢弃会阻止使用预测缓冲区
- 由于随机性,早期停止可能不太稳定
- 预测时必须指定ntree_limit参数
示例代码
import xgboost as xgb
# 读取数据
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
# 设置DART参数
param = {
'booster': 'dart',
'max_depth': 5,
'learning_rate': 0.1,
'objective': 'binary:logistic',
'silent': True,
'sample_type': 'uniform',
'normalize_type': 'tree',
'rate_drop': 0.1,
'skip_drop': 0.5
}
# 训练模型
num_round = 50
bst = xgb.train(param, dtrain, num_round)
# 进行预测(必须指定ntree_limit)
preds = bst.predict(dtest, ntree_limit=num_round)
适用场景
DART特别适合以下情况:
- 数据量相对较小,容易过拟合
- 需要更强的正则化效果
- 模型性能达到平台期,需要突破
总结
DART为XGBoost提供了一种创新的正则化方法,通过引入dropout技术增强了模型的泛化能力。虽然训练过程可能稍慢且不太稳定,但在特定场景下能带来显著的性能提升。理解其工作原理和参数配置,可以帮助开发者更好地利用这一强大工具。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 移动端HTML医疗影像DICOM在线浏览解决方案:零足迹医疗图像查看器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
207
220
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
287
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
215
仓颉编程语言运行时与标准库。
Cangjie
134
873