Storehaus 教程
2024-08-07 19:34:35作者:吴年前Myrtle
1. 项目介绍
Storehaus 是一个由 Twitter 开发的库,目的是简化异步键值存储(key-value store)的工作。它基于 Twitter 的 Future 实现,提供了三个核心接口:只读的 ReadableStore、只写的 WritableStore 和可读写的 Store。Storehaus 支持多种后端存储,包括 Memcache、MySQL、Redis、HBase 和 DynamoDB。此外,它还计划支持更多模块,如 BerkeleyDB。利用 Storehaus,开发者可以很容易地在测试阶段使用内存中的 JMapStore,而在生产环境中切换到其他持久化存储。
2. 项目快速启动
安装依赖
如果你正在使用 SBT(Scala Build Tool),将以下依赖添加到你的 build.sbt 文件中:
libraryDependencies += "com.twitter" %% "storehaus-core" % "0.15.0"
// 添加你需要的具体后端存储模块,例如 Redis
libraryDependencies += "com.twitter" %% "storehaus-redis" % "0.15.0"
示例代码
创建一个简单的 Redis 存储实例并进行读写操作:
import com.twitter.util.Future
import com.twitter.storehaus.redis.RedisStore
val redisConfig = ??? // 根据实际情况配置 Redis 连接参数
val redisClient = ???
val redisStore: RedisStore[Int, String] = RedisStore.fromClient(redisClient)
// 写入键值对
val writeFuture: Future[Unit] = redisStore.put((1, "hello"))
// 读取键值对
val readFuture: Future[Option[String]] = redisStore.get(1)
// 打印结果
writeFuture.onSuccess(_ => println("Write successful"))
readFuture.foreach { result =>
result match {
case Some(value) => println(s"Read value: $value")
case None => println("Value not found")
}
}
启动服务
确保你已经安装了 Redis 并且已启动。对于其他支持的存储,遵循它们各自的启动指南。
3. 应用案例和最佳实践
- 测试与生产环境隔离:使用
storehaus-testing模块,可以在测试环境中使用内存存储,以提高测试速度和隔离性。 - 异常处理:由于 Storehaus 使用了
Future,所以要处理潜在的异常,如使用.onFailure或者.rescue来捕获和处理错误。 - 并发控制:虽然 Storehaus 自身是线程安全的,但在高并发场景下,仍需考虑如何有效管理和同步客户端请求。
4. 典型生态项目
- Finagle:Twitter 的网络库,Storehaus 许多后端实现都基于 Finagle,如
finagle-memcached、finagle-mysql和finagle-redis。 - Scalding:一个用于 Hadoop 的 Scala 构建工具,它可以利用 Storehaus 进行数据处理和中间结果缓存。
- Algebird:Twitter 开源的数学库,提供了很多抽象数据类型和算法,常与 Storehaus 结合使用,构建分布式系统。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
295
2.63 K
暂无简介
Dart
585
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
187
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
359
2.3 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
760
72
Ascend Extension for PyTorch
Python
124
147
仓颉编译器源码及 cjdb 调试工具。
C++
122
430
仓颉编程语言运行时与标准库。
Cangjie
130
444