Supersonic项目中的用户确认机制优化方案
背景与现状分析
在Supersonic项目的问答对话系统中,当前存在一个值得优化的交互设计问题。当系统在schema mapping阶段遇到多个候选数据集或指标时,目前采用的是启发性算法自动选择最优解析方案,同时通过TAB切换方式提供备选方案。这种设计虽然实现了基本功能,但在用户体验方面存在明显不足。
当前方案的局限性
现有方案主要存在两个关键问题:
-
交互不直观:TAB切换方式容易被用户忽略,特别是在复杂查询场景下,用户可能意识不到还有其他解析选项可用。
-
决策透明度低:系统自动选择最优解析的过程对用户不可见,用户无法了解系统做出选择的依据,降低了系统的可信度。
优化方案设计
针对上述问题,我们提出在语义执行(semantic execution)前增加用户确认步骤的优化方案:
-
多候选场景提示:当系统识别到多个可能的解析方案时,暂停自动执行流程,向用户展示候选解析列表。
-
可视化确认界面:设计直观的确认界面,清晰展示各候选解析的关键差异点,帮助用户做出选择。
-
配置化开关:在助理粒度上提供配置选项,允许根据不同场景需求开启或关闭确认步骤。
技术实现要点
实现这一优化需要考虑以下技术细节:
-
状态管理:在对话流程中新增"等待确认"状态,确保系统在用户做出选择前保持适当状态。
-
上下文保持:确认过程中需要完整保留原始查询的上下文信息,确保无论用户选择哪个选项,后续处理都能正确进行。
-
性能优化:确认步骤不应显著增加系统响应时间,需要优化候选解析的生成和展示效率。
预期收益
这一优化将带来多方面的改进:
-
提升用户体验:通过明确的确认步骤,用户可以更清楚地了解系统理解其意图的过程,增强对系统的信任感。
-
提高准确性:用户参与解析选择过程,可以纠正系统可能的误判,提高最终结果的准确性。
-
增强可控性:配置化开关设计允许根据不同使用场景灵活调整交互方式,满足多样化需求。
总结
Supersonic项目中的这一交互优化,体现了从"系统自动决策"向"人机协同决策"的设计理念转变。通过增加用户确认步骤,不仅解决了现有TAB切换方式不够直观的问题,更重要的是建立了更加透明、可控的交互机制,为构建更可靠的问答对话系统奠定了基础。这种优化思路也值得在其他需要处理模糊查询的智能系统中借鉴应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00