Supersonic项目中的用户确认机制优化方案
背景与现状分析
在Supersonic项目的问答对话系统中,当前存在一个值得优化的交互设计问题。当系统在schema mapping阶段遇到多个候选数据集或指标时,目前采用的是启发性算法自动选择最优解析方案,同时通过TAB切换方式提供备选方案。这种设计虽然实现了基本功能,但在用户体验方面存在明显不足。
当前方案的局限性
现有方案主要存在两个关键问题:
-
交互不直观:TAB切换方式容易被用户忽略,特别是在复杂查询场景下,用户可能意识不到还有其他解析选项可用。
-
决策透明度低:系统自动选择最优解析的过程对用户不可见,用户无法了解系统做出选择的依据,降低了系统的可信度。
优化方案设计
针对上述问题,我们提出在语义执行(semantic execution)前增加用户确认步骤的优化方案:
-
多候选场景提示:当系统识别到多个可能的解析方案时,暂停自动执行流程,向用户展示候选解析列表。
-
可视化确认界面:设计直观的确认界面,清晰展示各候选解析的关键差异点,帮助用户做出选择。
-
配置化开关:在助理粒度上提供配置选项,允许根据不同场景需求开启或关闭确认步骤。
技术实现要点
实现这一优化需要考虑以下技术细节:
-
状态管理:在对话流程中新增"等待确认"状态,确保系统在用户做出选择前保持适当状态。
-
上下文保持:确认过程中需要完整保留原始查询的上下文信息,确保无论用户选择哪个选项,后续处理都能正确进行。
-
性能优化:确认步骤不应显著增加系统响应时间,需要优化候选解析的生成和展示效率。
预期收益
这一优化将带来多方面的改进:
-
提升用户体验:通过明确的确认步骤,用户可以更清楚地了解系统理解其意图的过程,增强对系统的信任感。
-
提高准确性:用户参与解析选择过程,可以纠正系统可能的误判,提高最终结果的准确性。
-
增强可控性:配置化开关设计允许根据不同使用场景灵活调整交互方式,满足多样化需求。
总结
Supersonic项目中的这一交互优化,体现了从"系统自动决策"向"人机协同决策"的设计理念转变。通过增加用户确认步骤,不仅解决了现有TAB切换方式不够直观的问题,更重要的是建立了更加透明、可控的交互机制,为构建更可靠的问答对话系统奠定了基础。这种优化思路也值得在其他需要处理模糊查询的智能系统中借鉴应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00