jsPsych项目canvas-slider-response插件2.1.0版本发布解析
jsPsych是一个用于构建行为实验的JavaScript库,广泛应用于心理学、神经科学等领域的在线实验开发。它提供了丰富的插件系统,使研究人员能够轻松创建各种实验范式。
核心更新内容
本次发布的canvas-slider-response插件2.1.0版本主要引入了一项重要改进:标准化引用功能。这一更新使得研究人员能够更方便地引用他们使用的插件和jsPsych库本身。
引用系统增强
新版本在每个插件中增加了标准化的引用信息字段,包含两种主流引用格式:
- APA格式:心理学领域常用的引用格式
- BibTeX格式:学术写作和参考文献管理工具广泛支持的格式
这些引用信息是自动生成的,基于每个插件根目录下的.cff文件(Citation File Format)。在构建过程中,系统会自动解析这些文件并生成相应的引用内容。
新增功能详解
-
插件元数据增强: 每个插件现在都包含一个
citations属性,存储了该插件的标准引用信息。这使得研究人员可以轻松获取他们使用的每个插件的正确引用方式。 -
全局引用功能: jsPsych库新增了
getCitations()方法,允许用户通过以下方式获取引用:// 获取特定插件的引用 const citations = jsPsych.getCitations(['canvas-slider-response'], 'apa'); // 获取多个插件的引用 const multipleCitations = jsPsych.getCitations(['plugin1', 'plugin2'], 'bibtex'); -
自动引用生成: 在构建过程中,系统会自动扫描插件的.cff文件并生成标准化的引用信息,确保引用数据的准确性和一致性。
技术实现细节
这一更新的技术实现涉及几个关键方面:
-
构建流程修改: 在构建过程中添加了新的处理步骤,用于解析.cff文件并生成引用信息。
-
模板系统更新: 插件模板现在默认包含citations字段,确保新创建的插件从一开始就支持引用功能。
-
引用格式标准化: 系统确保生成的引用符合学术出版的标准格式要求,包括作者、标题、版本号等必要信息。
对研究实践的影响
这一更新对心理学和行为科学研究具有重要意义:
-
学术诚信: 使研究人员能够更轻松地正确引用他们使用的工具,符合学术规范。
-
研究可重复性: 明确的版本和引用信息有助于其他研究者准确复现实验设置。
-
工作流程简化: 研究人员不再需要手动查找和格式化引用信息,节省了时间并减少了错误。
使用建议
对于使用canvas-slider-response插件的研究人员,建议:
- 在方法部分明确说明使用的插件版本
- 使用新的getCitations()方法生成标准引用
- 同时引用jsPsych主库和特定插件
- 在更新研究材料时检查引用信息是否需要更新
这一更新体现了jsPsych项目对学术规范和研究者需求的重视,使得基于web的行为实验更加规范化和专业化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00